|
--- |
|
library_name: peft |
|
license: apache-2.0 |
|
base_model: mistralai/Mistral-7B-Instruct-v0.3 |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
datasets: |
|
- json |
|
model-index: |
|
- name: Pretraining-SpongeBoB-7B-Instruct-V1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.8.0.dev0` |
|
```yaml |
|
base_model: mistralai/Mistral-7B-Instruct-v0.3 |
|
# optionally might have model_type or tokenizer_type |
|
model_type: MistralForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
# Automatically upload checkpoint and final model to HF |
|
hub_model_id: AiAF/Pretraining-SpongeBoB-7B-Instruct-V1 |
|
|
|
load_in_8bit: false |
|
load_in_4bit: true |
|
strict: false |
|
|
|
datasets: |
|
- path: json |
|
data_files: [pretraining.jsonl] |
|
type: completion |
|
|
|
dataset_prepared_path: last_run_prepared |
|
val_set_size: 0.1 |
|
output_dir: ./outputs/qlora-out/Pretraining-SpongeBoB-7B-Instruct-V1 |
|
save_total_limit: 10 |
|
|
|
adapter: qlora |
|
lora_model_dir: |
|
|
|
sequence_len: 8192 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
lora_r: 256 |
|
lora_alpha: 64 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
lora_target_modules: |
|
- gate_proj |
|
- down_proj |
|
- up_proj |
|
- q_proj |
|
- v_proj |
|
- k_proj |
|
- o_proj |
|
|
|
wandb_project: "LLM-Pretraining" |
|
wandb_entity: |
|
wandb_watch: "all" |
|
wandb_name: "Pretraining-SpongeBoB-7B-Instruct-V1" |
|
wandb_run_id: "Pretraining-SpongeBoB-7B-Instruct-V1" |
|
wandb_log_model: "false" |
|
|
|
gradient_accumulation_steps: 2 |
|
micro_batch_size: 9 |
|
num_epochs: 10 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.000005 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
loss_watchdog_threshold: 5.0 |
|
loss_watchdog_patience: 3 |
|
|
|
warmup_steps: 10 |
|
evals_per_epoch: 5 |
|
eval_table_size: |
|
eval_max_new_tokens: 128 |
|
saves_per_epoch: 5 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# Pretraining-SpongeBoB-7B-Instruct-V1 |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the json dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6255 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 9 |
|
- eval_batch_size: 9 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 18 |
|
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 10.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.7843 | 0.0417 | 1 | 1.7939 | |
|
| 1.8262 | 0.2083 | 5 | 1.7915 | |
|
| 1.839 | 0.4167 | 10 | 1.7733 | |
|
| 1.7503 | 0.625 | 15 | 1.7438 | |
|
| 1.7191 | 0.8333 | 20 | 1.7260 | |
|
| 1.7191 | 1.0417 | 25 | 1.7138 | |
|
| 1.7548 | 1.25 | 30 | 1.7023 | |
|
| 1.6795 | 1.4583 | 35 | 1.6924 | |
|
| 1.6848 | 1.6667 | 40 | 1.6836 | |
|
| 1.6856 | 1.875 | 45 | 1.6770 | |
|
| 1.7155 | 2.0833 | 50 | 1.6715 | |
|
| 1.6901 | 2.2917 | 55 | 1.6665 | |
|
| 1.6797 | 2.5 | 60 | 1.6621 | |
|
| 1.6704 | 2.7083 | 65 | 1.6581 | |
|
| 1.6763 | 2.9167 | 70 | 1.6545 | |
|
| 1.678 | 3.125 | 75 | 1.6516 | |
|
| 1.6271 | 3.3333 | 80 | 1.6490 | |
|
| 1.662 | 3.5417 | 85 | 1.6468 | |
|
| 1.6384 | 3.75 | 90 | 1.6446 | |
|
| 1.6273 | 3.9583 | 95 | 1.6427 | |
|
| 1.5934 | 4.1667 | 100 | 1.6408 | |
|
| 1.6217 | 4.375 | 105 | 1.6393 | |
|
| 1.6383 | 4.5833 | 110 | 1.6378 | |
|
| 1.6244 | 4.7917 | 115 | 1.6365 | |
|
| 1.6238 | 5.0 | 120 | 1.6352 | |
|
| 1.6179 | 5.2083 | 125 | 1.6340 | |
|
| 1.6203 | 5.4167 | 130 | 1.6330 | |
|
| 1.6177 | 5.625 | 135 | 1.6319 | |
|
| 1.6332 | 5.8333 | 140 | 1.6310 | |
|
| 1.6277 | 6.0417 | 145 | 1.6302 | |
|
| 1.6461 | 6.25 | 150 | 1.6296 | |
|
| 1.6668 | 6.4583 | 155 | 1.6290 | |
|
| 1.6249 | 6.6667 | 160 | 1.6284 | |
|
| 1.6013 | 6.875 | 165 | 1.6278 | |
|
| 1.6098 | 7.0833 | 170 | 1.6274 | |
|
| 1.5954 | 7.2917 | 175 | 1.6270 | |
|
| 1.6488 | 7.5 | 180 | 1.6267 | |
|
| 1.6153 | 7.7083 | 185 | 1.6264 | |
|
| 1.6232 | 7.9167 | 190 | 1.6262 | |
|
| 1.6611 | 8.125 | 195 | 1.6260 | |
|
| 1.5997 | 8.3333 | 200 | 1.6258 | |
|
| 1.6166 | 8.5417 | 205 | 1.6258 | |
|
| 1.6427 | 8.75 | 210 | 1.6256 | |
|
| 1.6157 | 8.9583 | 215 | 1.6255 | |
|
| 1.6303 | 9.1667 | 220 | 1.6255 | |
|
| 1.6179 | 9.375 | 225 | 1.6255 | |
|
| 1.6063 | 9.5833 | 230 | 1.6255 | |
|
| 1.6043 | 9.7917 | 235 | 1.6255 | |
|
| 1.5881 | 10.0 | 240 | 1.6255 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.14.0 |
|
- Transformers 4.49.0 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |