AiAF commited on
Commit
12737ec
·
verified ·
1 Parent(s): e3cd739

End of training

Browse files
Files changed (1) hide show
  1. README.md +197 -192
README.md CHANGED
@@ -1,202 +1,207 @@
1
  ---
2
- base_model: mistralai/Mistral-7B-Instruct-v0.3
3
  library_name: peft
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
 
102
 
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
  ### Framework versions
201
 
202
- - PEFT 0.14.0
 
 
 
 
 
1
  ---
 
2
  library_name: peft
3
+ license: apache-2.0
4
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ datasets:
9
+ - json
10
+ model-index:
11
+ - name: Pretraining-SpongeBoB-7B-Instruct-V1
12
+ results: []
13
  ---
14
 
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
19
+ <details><summary>See axolotl config</summary>
20
 
21
+ axolotl version: `0.8.0.dev0`
22
+ ```yaml
23
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
24
+ # optionally might have model_type or tokenizer_type
25
+ model_type: MistralForCausalLM
26
+ tokenizer_type: LlamaTokenizer
27
+ # Automatically upload checkpoint and final model to HF
28
+ hub_model_id: AiAF/Pretraining-SpongeBoB-7B-Instruct-V1
29
+
30
+ load_in_8bit: false
31
+ load_in_4bit: true
32
+ strict: false
33
+
34
+ datasets:
35
+ - path: json
36
+ data_files: [pretraining.jsonl]
37
+ type: completion
38
+
39
+ dataset_prepared_path: last_run_prepared
40
+ val_set_size: 0.1
41
+ output_dir: ./outputs/qlora-out/Pretraining-SpongeBoB-7B-Instruct-V1
42
+ save_total_limit: 10
43
+
44
+ adapter: qlora
45
+ lora_model_dir:
46
+
47
+ sequence_len: 8192
48
+ sample_packing: true
49
+ pad_to_sequence_len: true
50
+
51
+ lora_r: 256
52
+ lora_alpha: 64
53
+ lora_dropout: 0.05
54
+ lora_target_linear: true
55
+ lora_fan_in_fan_out:
56
+ lora_target_modules:
57
+ - gate_proj
58
+ - down_proj
59
+ - up_proj
60
+ - q_proj
61
+ - v_proj
62
+ - k_proj
63
+ - o_proj
64
+
65
+ wandb_project: "LLM-Pretraining"
66
+ wandb_entity:
67
+ wandb_watch: "all"
68
+ wandb_name: "Pretraining-SpongeBoB-7B-Instruct-V1"
69
+ wandb_run_id: "Pretraining-SpongeBoB-7B-Instruct-V1"
70
+ wandb_log_model: "false"
71
+
72
+ gradient_accumulation_steps: 2
73
+ micro_batch_size: 9
74
+ num_epochs: 10
75
+ optimizer: adamw_bnb_8bit
76
+ lr_scheduler: cosine
77
+ learning_rate: 0.000005
78
+
79
+ train_on_inputs: false
80
+ group_by_length: false
81
+ bf16: auto
82
+ fp16:
83
+ tf32: false
84
+
85
+ gradient_checkpointing: true
86
+ early_stopping_patience:
87
+ resume_from_checkpoint:
88
+ local_rank:
89
+ logging_steps: 1
90
+ xformers_attention:
91
+ flash_attention: true
92
+
93
+ loss_watchdog_threshold: 5.0
94
+ loss_watchdog_patience: 3
95
+
96
+ warmup_steps: 10
97
+ evals_per_epoch: 5
98
+ eval_table_size:
99
+ eval_max_new_tokens: 128
100
+ saves_per_epoch: 5
101
+ debug:
102
+ deepspeed:
103
+ weight_decay: 0.0
104
+ fsdp:
105
+ fsdp_config:
106
+ special_tokens:
107
+
108
+ ```
109
+
110
+ </details><br>
111
+
112
+ # Pretraining-SpongeBoB-7B-Instruct-V1
113
+
114
+ This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the json dataset.
115
+ It achieves the following results on the evaluation set:
116
+ - Loss: 1.6255
117
+
118
+ ## Model description
119
+
120
+ More information needed
121
+
122
+ ## Intended uses & limitations
123
+
124
+ More information needed
125
+
126
+ ## Training and evaluation data
127
+
128
+ More information needed
129
+
130
+ ## Training procedure
131
+
132
+ ### Training hyperparameters
133
+
134
+ The following hyperparameters were used during training:
135
+ - learning_rate: 5e-06
136
+ - train_batch_size: 9
137
+ - eval_batch_size: 9
138
+ - seed: 42
139
+ - gradient_accumulation_steps: 2
140
+ - total_train_batch_size: 18
141
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
142
+ - lr_scheduler_type: cosine
143
+ - lr_scheduler_warmup_steps: 10
144
+ - num_epochs: 10.0
145
+
146
+ ### Training results
147
+
148
+ | Training Loss | Epoch | Step | Validation Loss |
149
+ |:-------------:|:------:|:----:|:---------------:|
150
+ | 1.7843 | 0.0417 | 1 | 1.7939 |
151
+ | 1.8262 | 0.2083 | 5 | 1.7915 |
152
+ | 1.839 | 0.4167 | 10 | 1.7733 |
153
+ | 1.7503 | 0.625 | 15 | 1.7438 |
154
+ | 1.7191 | 0.8333 | 20 | 1.7260 |
155
+ | 1.7191 | 1.0417 | 25 | 1.7138 |
156
+ | 1.7548 | 1.25 | 30 | 1.7023 |
157
+ | 1.6795 | 1.4583 | 35 | 1.6924 |
158
+ | 1.6848 | 1.6667 | 40 | 1.6836 |
159
+ | 1.6856 | 1.875 | 45 | 1.6770 |
160
+ | 1.7155 | 2.0833 | 50 | 1.6715 |
161
+ | 1.6901 | 2.2917 | 55 | 1.6665 |
162
+ | 1.6797 | 2.5 | 60 | 1.6621 |
163
+ | 1.6704 | 2.7083 | 65 | 1.6581 |
164
+ | 1.6763 | 2.9167 | 70 | 1.6545 |
165
+ | 1.678 | 3.125 | 75 | 1.6516 |
166
+ | 1.6271 | 3.3333 | 80 | 1.6490 |
167
+ | 1.662 | 3.5417 | 85 | 1.6468 |
168
+ | 1.6384 | 3.75 | 90 | 1.6446 |
169
+ | 1.6273 | 3.9583 | 95 | 1.6427 |
170
+ | 1.5934 | 4.1667 | 100 | 1.6408 |
171
+ | 1.6217 | 4.375 | 105 | 1.6393 |
172
+ | 1.6383 | 4.5833 | 110 | 1.6378 |
173
+ | 1.6244 | 4.7917 | 115 | 1.6365 |
174
+ | 1.6238 | 5.0 | 120 | 1.6352 |
175
+ | 1.6179 | 5.2083 | 125 | 1.6340 |
176
+ | 1.6203 | 5.4167 | 130 | 1.6330 |
177
+ | 1.6177 | 5.625 | 135 | 1.6319 |
178
+ | 1.6332 | 5.8333 | 140 | 1.6310 |
179
+ | 1.6277 | 6.0417 | 145 | 1.6302 |
180
+ | 1.6461 | 6.25 | 150 | 1.6296 |
181
+ | 1.6668 | 6.4583 | 155 | 1.6290 |
182
+ | 1.6249 | 6.6667 | 160 | 1.6284 |
183
+ | 1.6013 | 6.875 | 165 | 1.6278 |
184
+ | 1.6098 | 7.0833 | 170 | 1.6274 |
185
+ | 1.5954 | 7.2917 | 175 | 1.6270 |
186
+ | 1.6488 | 7.5 | 180 | 1.6267 |
187
+ | 1.6153 | 7.7083 | 185 | 1.6264 |
188
+ | 1.6232 | 7.9167 | 190 | 1.6262 |
189
+ | 1.6611 | 8.125 | 195 | 1.6260 |
190
+ | 1.5997 | 8.3333 | 200 | 1.6258 |
191
+ | 1.6166 | 8.5417 | 205 | 1.6258 |
192
+ | 1.6427 | 8.75 | 210 | 1.6256 |
193
+ | 1.6157 | 8.9583 | 215 | 1.6255 |
194
+ | 1.6303 | 9.1667 | 220 | 1.6255 |
195
+ | 1.6179 | 9.375 | 225 | 1.6255 |
196
+ | 1.6063 | 9.5833 | 230 | 1.6255 |
197
+ | 1.6043 | 9.7917 | 235 | 1.6255 |
198
+ | 1.5881 | 10.0 | 240 | 1.6255 |
199
 
 
200
 
 
201
  ### Framework versions
202
 
203
+ - PEFT 0.14.0
204
+ - Transformers 4.49.0
205
+ - Pytorch 2.5.1+cu124
206
+ - Datasets 3.2.0
207
+ - Tokenizers 0.21.0