Built with Axolotl

See axolotl config

axolotl version: 0.8.0.dev0

base_model: mistralai/Mistral-7B-Instruct-v0.3
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: AiAF/Pretraining-SpongeBoB-7B-Instruct-V1

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: json
    data_files: [pretraining.jsonl]
    type: completion

dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/qlora-out/Pretraining-SpongeBoB-7B-Instruct-V1
save_total_limit: 10

adapter: qlora
lora_model_dir:

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

lora_r: 256
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: "LLM-Pretraining"
wandb_entity:
wandb_watch: "all"
wandb_name: "Pretraining-SpongeBoB-7B-Instruct-V1"
wandb_run_id: "Pretraining-SpongeBoB-7B-Instruct-V1"
wandb_log_model: "false"

gradient_accumulation_steps: 2
micro_batch_size: 9
num_epochs: 10
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 5
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 5
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

Pretraining-SpongeBoB-7B-Instruct-V1

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the json dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6255

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 9
  • eval_batch_size: 9
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 18
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss
1.7843 0.0417 1 1.7939
1.8262 0.2083 5 1.7915
1.839 0.4167 10 1.7733
1.7503 0.625 15 1.7438
1.7191 0.8333 20 1.7260
1.7191 1.0417 25 1.7138
1.7548 1.25 30 1.7023
1.6795 1.4583 35 1.6924
1.6848 1.6667 40 1.6836
1.6856 1.875 45 1.6770
1.7155 2.0833 50 1.6715
1.6901 2.2917 55 1.6665
1.6797 2.5 60 1.6621
1.6704 2.7083 65 1.6581
1.6763 2.9167 70 1.6545
1.678 3.125 75 1.6516
1.6271 3.3333 80 1.6490
1.662 3.5417 85 1.6468
1.6384 3.75 90 1.6446
1.6273 3.9583 95 1.6427
1.5934 4.1667 100 1.6408
1.6217 4.375 105 1.6393
1.6383 4.5833 110 1.6378
1.6244 4.7917 115 1.6365
1.6238 5.0 120 1.6352
1.6179 5.2083 125 1.6340
1.6203 5.4167 130 1.6330
1.6177 5.625 135 1.6319
1.6332 5.8333 140 1.6310
1.6277 6.0417 145 1.6302
1.6461 6.25 150 1.6296
1.6668 6.4583 155 1.6290
1.6249 6.6667 160 1.6284
1.6013 6.875 165 1.6278
1.6098 7.0833 170 1.6274
1.5954 7.2917 175 1.6270
1.6488 7.5 180 1.6267
1.6153 7.7083 185 1.6264
1.6232 7.9167 190 1.6262
1.6611 8.125 195 1.6260
1.5997 8.3333 200 1.6258
1.6166 8.5417 205 1.6258
1.6427 8.75 210 1.6256
1.6157 8.9583 215 1.6255
1.6303 9.1667 220 1.6255
1.6179 9.375 225 1.6255
1.6063 9.5833 230 1.6255
1.6043 9.7917 235 1.6255
1.5881 10.0 240 1.6255

Framework versions

  • PEFT 0.14.0
  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
3
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for AiAF/Pretraining-Yellow-Atol-7B-Instruct-V1

Adapter
(250)
this model