--- library_name: peft license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.3 tags: - axolotl - generated_from_trainer datasets: - json model-index: - name: Pretraining-SpongeBoB-7B-Instruct-V1 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0.dev0` ```yaml base_model: mistralai/Mistral-7B-Instruct-v0.3 # optionally might have model_type or tokenizer_type model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer # Automatically upload checkpoint and final model to HF hub_model_id: AiAF/Pretraining-SpongeBoB-7B-Instruct-V1 load_in_8bit: false load_in_4bit: true strict: false datasets: - path: json data_files: [pretraining.jsonl] type: completion dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./outputs/qlora-out/Pretraining-SpongeBoB-7B-Instruct-V1 save_total_limit: 10 adapter: qlora lora_model_dir: sequence_len: 8192 sample_packing: true pad_to_sequence_len: true lora_r: 256 lora_alpha: 64 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: "LLM-Pretraining" wandb_entity: wandb_watch: "all" wandb_name: "Pretraining-SpongeBoB-7B-Instruct-V1" wandb_run_id: "Pretraining-SpongeBoB-7B-Instruct-V1" wandb_log_model: "false" gradient_accumulation_steps: 2 micro_batch_size: 9 num_epochs: 10 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000005 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 5 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 5 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# Pretraining-SpongeBoB-7B-Instruct-V1 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the json dataset. It achieves the following results on the evaluation set: - Loss: 1.6255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 9 - eval_batch_size: 9 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 18 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7843 | 0.0417 | 1 | 1.7939 | | 1.8262 | 0.2083 | 5 | 1.7915 | | 1.839 | 0.4167 | 10 | 1.7733 | | 1.7503 | 0.625 | 15 | 1.7438 | | 1.7191 | 0.8333 | 20 | 1.7260 | | 1.7191 | 1.0417 | 25 | 1.7138 | | 1.7548 | 1.25 | 30 | 1.7023 | | 1.6795 | 1.4583 | 35 | 1.6924 | | 1.6848 | 1.6667 | 40 | 1.6836 | | 1.6856 | 1.875 | 45 | 1.6770 | | 1.7155 | 2.0833 | 50 | 1.6715 | | 1.6901 | 2.2917 | 55 | 1.6665 | | 1.6797 | 2.5 | 60 | 1.6621 | | 1.6704 | 2.7083 | 65 | 1.6581 | | 1.6763 | 2.9167 | 70 | 1.6545 | | 1.678 | 3.125 | 75 | 1.6516 | | 1.6271 | 3.3333 | 80 | 1.6490 | | 1.662 | 3.5417 | 85 | 1.6468 | | 1.6384 | 3.75 | 90 | 1.6446 | | 1.6273 | 3.9583 | 95 | 1.6427 | | 1.5934 | 4.1667 | 100 | 1.6408 | | 1.6217 | 4.375 | 105 | 1.6393 | | 1.6383 | 4.5833 | 110 | 1.6378 | | 1.6244 | 4.7917 | 115 | 1.6365 | | 1.6238 | 5.0 | 120 | 1.6352 | | 1.6179 | 5.2083 | 125 | 1.6340 | | 1.6203 | 5.4167 | 130 | 1.6330 | | 1.6177 | 5.625 | 135 | 1.6319 | | 1.6332 | 5.8333 | 140 | 1.6310 | | 1.6277 | 6.0417 | 145 | 1.6302 | | 1.6461 | 6.25 | 150 | 1.6296 | | 1.6668 | 6.4583 | 155 | 1.6290 | | 1.6249 | 6.6667 | 160 | 1.6284 | | 1.6013 | 6.875 | 165 | 1.6278 | | 1.6098 | 7.0833 | 170 | 1.6274 | | 1.5954 | 7.2917 | 175 | 1.6270 | | 1.6488 | 7.5 | 180 | 1.6267 | | 1.6153 | 7.7083 | 185 | 1.6264 | | 1.6232 | 7.9167 | 190 | 1.6262 | | 1.6611 | 8.125 | 195 | 1.6260 | | 1.5997 | 8.3333 | 200 | 1.6258 | | 1.6166 | 8.5417 | 205 | 1.6258 | | 1.6427 | 8.75 | 210 | 1.6256 | | 1.6157 | 8.9583 | 215 | 1.6255 | | 1.6303 | 9.1667 | 220 | 1.6255 | | 1.6179 | 9.375 | 225 | 1.6255 | | 1.6063 | 9.5833 | 230 | 1.6255 | | 1.6043 | 9.7917 | 235 | 1.6255 | | 1.5881 | 10.0 | 240 | 1.6255 | ### Framework versions - PEFT 0.14.0 - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0