Classificationmodel / README.md
Fluospark128's picture
Create README.md
b5403c0 verified
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import timm
from transformers import ViTFeatureExtractor, ViTForImageClassification
from pathlib import Path
import pandas as pd
import numpy as np
from PIL import Image
from sklearn.model_selection import train_test_split
from tqdm.auto import tqdm
import wandb
class PlantDiseaseDataset(Dataset):
    def __init__(self, image_paths, labels, transform=None):
        self.image_paths = image_paths
        self.labels = labels
        self.transform = transform
       
    def __len__(self):
        return len(self.image_paths)
   
    def __getitem__(self, idx):
        image_path = self.image_paths[idx]
        image = Image.open(image_path).convert('RGB')
        label = self.labels[idx]
       
        if self.transform:
            image = self.transform(image)
           
        return image, label
class PlantDiseaseClassifier:
    def __init__(self, data_dir, model_name='vit_base_patch16_224', num_classes=38):
        self.data_dir = Path(data_dir)
        self.model_name = model_name
        self.num_classes = num_classes
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
       
        # Initialize wandb
        wandb.init(project="plant-disease-classification")
       
    def prepare_data(self):
        """Prepare dataset and create data loaders"""
        # Data augmentation and normalization for training
        train_transform = transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.RandomVerticalFlip(),
            transforms.RandomRotation(20),
            transforms.ColorJitter(brightness=0.2, contrast=0.2),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ])
       
        # Just normalization for validation/testing
        val_transform = transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ])
       
        # Collect all image paths and labels
        image_paths = []
        labels = []
        self.class_to_idx = {}
       
        for idx, class_dir in enumerate(sorted(self.data_dir.glob('*'))):
            if class_dir.is_dir():
                self.class_to_idx[class_dir.name] = idx
                for img_path in class_dir.glob('*.jpg'):
                    image_paths.append(str(img_path))
                    labels.append(idx)
       
        # Split data
        train_paths, val_paths, train_labels, val_labels = train_test_split(
            image_paths, labels, test_size=0.2, stratify=labels, random_state=42
        )
       
        # Create datasets
        train_dataset = PlantDiseaseDataset(train_paths, train_labels, train_transform)
        val_dataset = PlantDiseaseDataset(val_paths, val_labels, val_transform)
       
        # Create data loaders
        self.train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=4)
        self.val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, num_workers=4)
       
        return self.train_loader, self.val_loader
   
    def create_model(self):
        """Initialize the Vision Transformer model"""
        self.model = timm.create_model(
            self.model_name,
            pretrained=True,
            num_classes=self.num_classes
        )
        self.model = self.model.to(self.device)
       
        # Loss function and optimizer
        self.criterion = nn.CrossEntropyLoss()
        self.optimizer = torch.optim.AdamW(
            self.model.parameters(),
            lr=2e-5,
            weight_decay=0.01
        )
        self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
            self.optimizer,
            T_max=10
        )
       
        return self.model
   
    def train_epoch(self, epoch):
        """Train for one epoch"""
        self.model.train()
        total_loss = 0
        correct = 0
        total = 0
       
        progress_bar = tqdm(self.train_loader, desc=f'Epoch {epoch}')
       
        for batch_idx, (inputs, targets) in enumerate(progress_bar):
            inputs, targets = inputs.to(self.device), targets.to(self.device)
           
            self.optimizer.zero_grad()
            outputs = self.model(inputs)
            loss = self.criterion(outputs, targets)
           
            loss.backward()
            self.optimizer.step()
           
            total_loss += loss.item()
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()
           
            progress_bar.set_postfix({
                'Loss': total_loss/(batch_idx+1),
                'Acc': 100.*correct/total
            })
           
            # Log to wandb
            wandb.log({
                'train_loss': loss.item(),
                'train_acc': 100.*correct/total
            })
           
        return total_loss/len(self.train_loader), 100.*correct/total
   
    def validate(self):
        """Validate the model"""
        self.model.eval()
        total_loss = 0
        correct = 0
        total = 0
       
        with torch.no_grad():
            for inputs, targets in tqdm(self.val_loader, desc='Validating'):
                inputs, targets = inputs.to(self.device), targets.to(self.device)
                outputs = self.model(inputs)
                loss = self.criterion(outputs, targets)
               
                total_loss += loss.item()
                _, predicted = outputs.max(1)
                total += targets.size(0)
                correct += predicted.eq(targets).sum().item()
               
        accuracy = 100.*correct/total
        avg_loss = total_loss/len(self.val_loader)
       
        # Log to wandb
        wandb.log({
            'val_loss': avg_loss,
            'val_acc': accuracy
        })
       
        return avg_loss, accuracy
   
    def train(self, epochs=10):
        """Complete training process"""
        best_acc = 0
       
        for epoch in range(epochs):
            train_loss, train_acc = self.train_epoch(epoch)
            val_loss, val_acc = self.validate()
            self.scheduler.step()
           
            print(f'\nEpoch {epoch}:')
            print(f'Train Loss: {train_loss:.4f} | Train Acc: {train_acc:.2f}%')
            print(f'Val Loss: {val_loss:.4f} | Val Acc: {val_acc:.2f}%')
           
            # Save best model
            if val_acc > best_acc:
                best_acc = val_acc
                torch.save({
                    'model_state_dict': self.model.state_dict(),
                    'optimizer_state_dict': self.optimizer.state_dict(),
                    'class_to_idx': self.class_to_idx
                }, 'best_model.pth')
       
        wandb.finish()
   
    def save_for_huggingface(self):
        """Save model in HF中国镜像站 format"""
        # Load best model
        checkpoint = torch.load('best_model.pth')
        self.model.load_state_dict(checkpoint['model_state_dict'])
       
        # Save model and config
        self.model.save_pretrained('plant_disease_model')
       
        # Save class mapping
        idx_to_class = {v: k for k, v in self.class_to_idx.items()}
        pd.Series(idx_to_class).to_json('class_mapping.json')
if __name__ == "__main__":
    classifier = PlantDiseaseClassifier(data_dir="path/to/dataset")
    classifier.prepare_data()
    classifier.create_model()
    classifier.train(epochs=10)
    classifier.save_for_huggingface()