File size: 9,596 Bytes
b5403c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import timm
from transformers import ViTFeatureExtractor, ViTForImageClassification
from pathlib import Path
import pandas as pd
import numpy as np
from PIL import Image
from sklearn.model_selection import train_test_split
from tqdm.auto import tqdm
import wandb

class PlantDiseaseDataset(Dataset):
    def __init__(self, image_paths, labels, transform=None):
        self.image_paths = image_paths
        self.labels = labels
        self.transform = transform
        
    def __len__(self):
        return len(self.image_paths)
    
    def __getitem__(self, idx):
        image_path = self.image_paths[idx]
        image = Image.open(image_path).convert('RGB')
        label = self.labels[idx]
        
        if self.transform:
            image = self.transform(image)
            
        return image, label

class PlantDiseaseClassifier:
    def __init__(self, data_dir, model_name='vit_base_patch16_224', num_classes=38):
        self.data_dir = Path(data_dir)
        self.model_name = model_name
        self.num_classes = num_classes
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        
        # Initialize wandb
        wandb.init(project="plant-disease-classification")
        
    def prepare_data(self):
        """Prepare dataset and create data loaders"""
        # Data augmentation and normalization for training
        train_transform = transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.RandomVerticalFlip(),
            transforms.RandomRotation(20),
            transforms.ColorJitter(brightness=0.2, contrast=0.2),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ])
        
        # Just normalization for validation/testing
        val_transform = transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ])
        
        # Collect all image paths and labels
        image_paths = []
        labels = []
        self.class_to_idx = {}
        
        for idx, class_dir in enumerate(sorted(self.data_dir.glob('*'))):
            if class_dir.is_dir():
                self.class_to_idx[class_dir.name] = idx
                for img_path in class_dir.glob('*.jpg'):
                    image_paths.append(str(img_path))
                    labels.append(idx)
        
        # Split data
        train_paths, val_paths, train_labels, val_labels = train_test_split(
            image_paths, labels, test_size=0.2, stratify=labels, random_state=42
        )
        
        # Create datasets
        train_dataset = PlantDiseaseDataset(train_paths, train_labels, train_transform)
        val_dataset = PlantDiseaseDataset(val_paths, val_labels, val_transform)
        
        # Create data loaders
        self.train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=4)
        self.val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, num_workers=4)
        
        return self.train_loader, self.val_loader
    
    def create_model(self):
        """Initialize the Vision Transformer model"""
        self.model = timm.create_model(
            self.model_name,
            pretrained=True,
            num_classes=self.num_classes
        )
        self.model = self.model.to(self.device)
        
        # Loss function and optimizer
        self.criterion = nn.CrossEntropyLoss()
        self.optimizer = torch.optim.AdamW(
            self.model.parameters(),
            lr=2e-5,
            weight_decay=0.01
        )
        self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
            self.optimizer,
            T_max=10
        )
        
        return self.model
    
    def train_epoch(self, epoch):
        """Train for one epoch"""
        self.model.train()
        total_loss = 0
        correct = 0
        total = 0
        
        progress_bar = tqdm(self.train_loader, desc=f'Epoch {epoch}')
        
        for batch_idx, (inputs, targets) in enumerate(progress_bar):
            inputs, targets = inputs.to(self.device), targets.to(self.device)
            
            self.optimizer.zero_grad()
            outputs = self.model(inputs)
            loss = self.criterion(outputs, targets)
            
            loss.backward()
            self.optimizer.step()
            
            total_loss += loss.item()
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()
            
            progress_bar.set_postfix({
                'Loss': total_loss/(batch_idx+1),
                'Acc': 100.*correct/total
            })
            
            # Log to wandb
            wandb.log({
                'train_loss': loss.item(),
                'train_acc': 100.*correct/total
            })
            
        return total_loss/len(self.train_loader), 100.*correct/total
    
    def validate(self):
        """Validate the model"""
        self.model.eval()
        total_loss = 0
        correct = 0
        total = 0
        
        with torch.no_grad():
            for inputs, targets in tqdm(self.val_loader, desc='Validating'):
                inputs, targets = inputs.to(self.device), targets.to(self.device)
                outputs = self.model(inputs)
                loss = self.criterion(outputs, targets)
                
                total_loss += loss.item()
                _, predicted = outputs.max(1)
                total += targets.size(0)
                correct += predicted.eq(targets).sum().item()
                
        accuracy = 100.*correct/total
        avg_loss = total_loss/len(self.val_loader)
        
        # Log to wandb
        wandb.log({
            'val_loss': avg_loss,
            'val_acc': accuracy
        })
        
        return avg_loss, accuracy
    
    def train(self, epochs=10):
        """Complete training process"""
        best_acc = 0
        
        for epoch in range(epochs):
            train_loss, train_acc = self.train_epoch(epoch)
            val_loss, val_acc = self.validate()
            self.scheduler.step()
            
            print(f'\nEpoch {epoch}:')
            print(f'Train Loss: {train_loss:.4f} | Train Acc: {train_acc:.2f}%')
            print(f'Val Loss: {val_loss:.4f} | Val Acc: {val_acc:.2f}%')
            
            # Save best model
            if val_acc > best_acc:
                best_acc = val_acc
                torch.save({
                    'model_state_dict': self.model.state_dict(),
                    'optimizer_state_dict': self.optimizer.state_dict(),
                    'class_to_idx': self.class_to_idx
                }, 'best_model.pth')
        
        wandb.finish()
    
    def save_for_huggingface(self):
        """Save model in HF中国镜像站 format"""
        # Load best model
        checkpoint = torch.load('best_model.pth')
        self.model.load_state_dict(checkpoint['model_state_dict'])
        
        # Save model and config
        self.model.save_pretrained('plant_disease_model')
        
        # Save class mapping
        idx_to_class = {v: k for k, v in self.class_to_idx.items()}
        pd.Series(idx_to_class).to_json('class_mapping.json')

if __name__ == "__main__":
    classifier = PlantDiseaseClassifier(data_dir="path/to/dataset")
    classifier.prepare_data()
    classifier.create_model()
    classifier.train(epochs=10)
    classifier.save_for_huggingface()