Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.utils.data import Dataset, DataLoader
|
4 |
+
from torchvision import transforms
|
5 |
+
import timm
|
6 |
+
from transformers import ViTFeatureExtractor, ViTForImageClassification
|
7 |
+
from pathlib import Path
|
8 |
+
import pandas as pd
|
9 |
+
import numpy as np
|
10 |
+
from PIL import Image
|
11 |
+
from sklearn.model_selection import train_test_split
|
12 |
+
from tqdm.auto import tqdm
|
13 |
+
import wandb
|
14 |
+
|
15 |
+
class PlantDiseaseDataset(Dataset):
|
16 |
+
def __init__(self, image_paths, labels, transform=None):
|
17 |
+
self.image_paths = image_paths
|
18 |
+
self.labels = labels
|
19 |
+
self.transform = transform
|
20 |
+
|
21 |
+
def __len__(self):
|
22 |
+
return len(self.image_paths)
|
23 |
+
|
24 |
+
def __getitem__(self, idx):
|
25 |
+
image_path = self.image_paths[idx]
|
26 |
+
image = Image.open(image_path).convert('RGB')
|
27 |
+
label = self.labels[idx]
|
28 |
+
|
29 |
+
if self.transform:
|
30 |
+
image = self.transform(image)
|
31 |
+
|
32 |
+
return image, label
|
33 |
+
|
34 |
+
class PlantDiseaseClassifier:
|
35 |
+
def __init__(self, data_dir, model_name='vit_base_patch16_224', num_classes=38):
|
36 |
+
self.data_dir = Path(data_dir)
|
37 |
+
self.model_name = model_name
|
38 |
+
self.num_classes = num_classes
|
39 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
40 |
+
|
41 |
+
# Initialize wandb
|
42 |
+
wandb.init(project="plant-disease-classification")
|
43 |
+
|
44 |
+
def prepare_data(self):
|
45 |
+
"""Prepare dataset and create data loaders"""
|
46 |
+
# Data augmentation and normalization for training
|
47 |
+
train_transform = transforms.Compose([
|
48 |
+
transforms.RandomResizedCrop(224),
|
49 |
+
transforms.RandomHorizontalFlip(),
|
50 |
+
transforms.RandomVerticalFlip(),
|
51 |
+
transforms.RandomRotation(20),
|
52 |
+
transforms.ColorJitter(brightness=0.2, contrast=0.2),
|
53 |
+
transforms.ToTensor(),
|
54 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
55 |
+
])
|
56 |
+
|
57 |
+
# Just normalization for validation/testing
|
58 |
+
val_transform = transforms.Compose([
|
59 |
+
transforms.Resize(256),
|
60 |
+
transforms.CenterCrop(224),
|
61 |
+
transforms.ToTensor(),
|
62 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
63 |
+
])
|
64 |
+
|
65 |
+
# Collect all image paths and labels
|
66 |
+
image_paths = []
|
67 |
+
labels = []
|
68 |
+
self.class_to_idx = {}
|
69 |
+
|
70 |
+
for idx, class_dir in enumerate(sorted(self.data_dir.glob('*'))):
|
71 |
+
if class_dir.is_dir():
|
72 |
+
self.class_to_idx[class_dir.name] = idx
|
73 |
+
for img_path in class_dir.glob('*.jpg'):
|
74 |
+
image_paths.append(str(img_path))
|
75 |
+
labels.append(idx)
|
76 |
+
|
77 |
+
# Split data
|
78 |
+
train_paths, val_paths, train_labels, val_labels = train_test_split(
|
79 |
+
image_paths, labels, test_size=0.2, stratify=labels, random_state=42
|
80 |
+
)
|
81 |
+
|
82 |
+
# Create datasets
|
83 |
+
train_dataset = PlantDiseaseDataset(train_paths, train_labels, train_transform)
|
84 |
+
val_dataset = PlantDiseaseDataset(val_paths, val_labels, val_transform)
|
85 |
+
|
86 |
+
# Create data loaders
|
87 |
+
self.train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=4)
|
88 |
+
self.val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, num_workers=4)
|
89 |
+
|
90 |
+
return self.train_loader, self.val_loader
|
91 |
+
|
92 |
+
def create_model(self):
|
93 |
+
"""Initialize the Vision Transformer model"""
|
94 |
+
self.model = timm.create_model(
|
95 |
+
self.model_name,
|
96 |
+
pretrained=True,
|
97 |
+
num_classes=self.num_classes
|
98 |
+
)
|
99 |
+
self.model = self.model.to(self.device)
|
100 |
+
|
101 |
+
# Loss function and optimizer
|
102 |
+
self.criterion = nn.CrossEntropyLoss()
|
103 |
+
self.optimizer = torch.optim.AdamW(
|
104 |
+
self.model.parameters(),
|
105 |
+
lr=2e-5,
|
106 |
+
weight_decay=0.01
|
107 |
+
)
|
108 |
+
self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
|
109 |
+
self.optimizer,
|
110 |
+
T_max=10
|
111 |
+
)
|
112 |
+
|
113 |
+
return self.model
|
114 |
+
|
115 |
+
def train_epoch(self, epoch):
|
116 |
+
"""Train for one epoch"""
|
117 |
+
self.model.train()
|
118 |
+
total_loss = 0
|
119 |
+
correct = 0
|
120 |
+
total = 0
|
121 |
+
|
122 |
+
progress_bar = tqdm(self.train_loader, desc=f'Epoch {epoch}')
|
123 |
+
|
124 |
+
for batch_idx, (inputs, targets) in enumerate(progress_bar):
|
125 |
+
inputs, targets = inputs.to(self.device), targets.to(self.device)
|
126 |
+
|
127 |
+
self.optimizer.zero_grad()
|
128 |
+
outputs = self.model(inputs)
|
129 |
+
loss = self.criterion(outputs, targets)
|
130 |
+
|
131 |
+
loss.backward()
|
132 |
+
self.optimizer.step()
|
133 |
+
|
134 |
+
total_loss += loss.item()
|
135 |
+
_, predicted = outputs.max(1)
|
136 |
+
total += targets.size(0)
|
137 |
+
correct += predicted.eq(targets).sum().item()
|
138 |
+
|
139 |
+
progress_bar.set_postfix({
|
140 |
+
'Loss': total_loss/(batch_idx+1),
|
141 |
+
'Acc': 100.*correct/total
|
142 |
+
})
|
143 |
+
|
144 |
+
# Log to wandb
|
145 |
+
wandb.log({
|
146 |
+
'train_loss': loss.item(),
|
147 |
+
'train_acc': 100.*correct/total
|
148 |
+
})
|
149 |
+
|
150 |
+
return total_loss/len(self.train_loader), 100.*correct/total
|
151 |
+
|
152 |
+
def validate(self):
|
153 |
+
"""Validate the model"""
|
154 |
+
self.model.eval()
|
155 |
+
total_loss = 0
|
156 |
+
correct = 0
|
157 |
+
total = 0
|
158 |
+
|
159 |
+
with torch.no_grad():
|
160 |
+
for inputs, targets in tqdm(self.val_loader, desc='Validating'):
|
161 |
+
inputs, targets = inputs.to(self.device), targets.to(self.device)
|
162 |
+
outputs = self.model(inputs)
|
163 |
+
loss = self.criterion(outputs, targets)
|
164 |
+
|
165 |
+
total_loss += loss.item()
|
166 |
+
_, predicted = outputs.max(1)
|
167 |
+
total += targets.size(0)
|
168 |
+
correct += predicted.eq(targets).sum().item()
|
169 |
+
|
170 |
+
accuracy = 100.*correct/total
|
171 |
+
avg_loss = total_loss/len(self.val_loader)
|
172 |
+
|
173 |
+
# Log to wandb
|
174 |
+
wandb.log({
|
175 |
+
'val_loss': avg_loss,
|
176 |
+
'val_acc': accuracy
|
177 |
+
})
|
178 |
+
|
179 |
+
return avg_loss, accuracy
|
180 |
+
|
181 |
+
def train(self, epochs=10):
|
182 |
+
"""Complete training process"""
|
183 |
+
best_acc = 0
|
184 |
+
|
185 |
+
for epoch in range(epochs):
|
186 |
+
train_loss, train_acc = self.train_epoch(epoch)
|
187 |
+
val_loss, val_acc = self.validate()
|
188 |
+
self.scheduler.step()
|
189 |
+
|
190 |
+
print(f'\nEpoch {epoch}:')
|
191 |
+
print(f'Train Loss: {train_loss:.4f} | Train Acc: {train_acc:.2f}%')
|
192 |
+
print(f'Val Loss: {val_loss:.4f} | Val Acc: {val_acc:.2f}%')
|
193 |
+
|
194 |
+
# Save best model
|
195 |
+
if val_acc > best_acc:
|
196 |
+
best_acc = val_acc
|
197 |
+
torch.save({
|
198 |
+
'model_state_dict': self.model.state_dict(),
|
199 |
+
'optimizer_state_dict': self.optimizer.state_dict(),
|
200 |
+
'class_to_idx': self.class_to_idx
|
201 |
+
}, 'best_model.pth')
|
202 |
+
|
203 |
+
wandb.finish()
|
204 |
+
|
205 |
+
def save_for_huggingface(self):
|
206 |
+
"""Save model in HF中国镜像站 format"""
|
207 |
+
# Load best model
|
208 |
+
checkpoint = torch.load('best_model.pth')
|
209 |
+
self.model.load_state_dict(checkpoint['model_state_dict'])
|
210 |
+
|
211 |
+
# Save model and config
|
212 |
+
self.model.save_pretrained('plant_disease_model')
|
213 |
+
|
214 |
+
# Save class mapping
|
215 |
+
idx_to_class = {v: k for k, v in self.class_to_idx.items()}
|
216 |
+
pd.Series(idx_to_class).to_json('class_mapping.json')
|
217 |
+
|
218 |
+
if __name__ == "__main__":
|
219 |
+
classifier = PlantDiseaseClassifier(data_dir="path/to/dataset")
|
220 |
+
classifier.prepare_data()
|
221 |
+
classifier.create_model()
|
222 |
+
classifier.train(epochs=10)
|
223 |
+
classifier.save_for_huggingface()
|