|
--- |
|
library_name: peft |
|
license: apache-2.0 |
|
base_model: mistralai/Mistral-7B-Instruct-v0.3 |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
datasets: |
|
- AiAF/Codename-75567-Pretrainin.jsonl |
|
model-index: |
|
- name: Pretrained-QLoRA-Codename-75567-V1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.8.0.dev0` |
|
```yaml |
|
base_model: mistralai/Mistral-7B-Instruct-v0.3 |
|
# optionally might have model_type or tokenizer_type |
|
model_type: MistralForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
# Automatically upload checkpoint and final model to HF |
|
hub_model_id: AiAF/Pretrained-QLoRA-Codename-75567-V1 |
|
|
|
load_in_8bit: false |
|
load_in_4bit: true |
|
strict: false |
|
|
|
datasets: |
|
- path: AiAF/Codename-75567-Pretrainin.jsonl |
|
type: completion |
|
|
|
dataset_prepared_path: last_run_prepared |
|
val_set_size: 0.05 |
|
output_dir: ./outputs/qlora-out |
|
save_total_limit: 10 |
|
|
|
adapter: qlora |
|
lora_model_dir: |
|
lora_r: 256 |
|
lora_alpha: 64 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
lora_target_modules: |
|
- gate_proj |
|
- down_proj |
|
- up_proj |
|
- q_proj |
|
- v_proj |
|
- k_proj |
|
- o_proj |
|
|
|
sequence_len: 512 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
eval_sample_packing: false |
|
|
|
wandb_project: "LLM-Pretraining" |
|
wandb_watch: "all" |
|
wandb_name: "QLoRA-Codename-75567-V1" |
|
wandb_log_model: "false" |
|
wandb_run_id: "QLoRA-Codename-75567-V1" |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 2 |
|
num_epochs: 10 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.000005 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 1 |
|
evals_per_epoch: 5 |
|
eval_table_size: |
|
eval_max_new_tokens: 128 |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# Pretrained-QLoRA-Codename-75567-V1 |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the AiAF/Codename-75567-Pretrainin.jsonl dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6938 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 8 |
|
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 2 |
|
- num_epochs: 10.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.8916 | 0.3333 | 1 | 1.8880 | |
|
| 2.017 | 0.6667 | 2 | 1.8847 | |
|
| 1.9119 | 1.0 | 3 | 1.8795 | |
|
| 1.9716 | 1.3333 | 4 | 1.8711 | |
|
| 1.8532 | 1.6667 | 5 | 1.8601 | |
|
| 1.9759 | 2.0 | 6 | 1.8488 | |
|
| 1.856 | 2.3333 | 7 | 1.8357 | |
|
| 1.8404 | 2.6667 | 8 | 1.8241 | |
|
| 1.976 | 3.0 | 9 | 1.8131 | |
|
| 1.8504 | 3.3333 | 10 | 1.8012 | |
|
| 1.8574 | 3.6667 | 11 | 1.7860 | |
|
| 1.8194 | 4.0 | 12 | 1.7749 | |
|
| 1.8022 | 4.3333 | 13 | 1.7646 | |
|
| 1.7632 | 4.6667 | 14 | 1.7525 | |
|
| 1.8326 | 5.0 | 15 | 1.7440 | |
|
| 1.7696 | 5.3333 | 16 | 1.7325 | |
|
| 1.8039 | 5.6667 | 17 | 1.7257 | |
|
| 1.7019 | 6.0 | 18 | 1.7164 | |
|
| 1.7878 | 6.3333 | 19 | 1.7132 | |
|
| 1.718 | 6.6667 | 20 | 1.7093 | |
|
| 1.6994 | 7.0 | 21 | 1.7049 | |
|
| 1.785 | 7.3333 | 22 | 1.6996 | |
|
| 1.6659 | 7.6667 | 23 | 1.6977 | |
|
| 1.7241 | 8.0 | 24 | 1.6970 | |
|
| 1.7397 | 8.3333 | 25 | 1.6952 | |
|
| 1.6894 | 8.6667 | 26 | 1.6934 | |
|
| 1.723 | 9.0 | 27 | 1.6932 | |
|
| 1.7999 | 9.3333 | 28 | 1.6927 | |
|
| 1.6715 | 9.6667 | 29 | 1.6941 | |
|
| 1.6696 | 10.0 | 30 | 1.6938 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.14.0 |
|
- Transformers 4.49.0 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |