See axolotl config
axolotl version: 0.8.0.dev0
base_model: mistralai/Mistral-7B-Instruct-v0.3
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: AiAF/Pretrained-QLoRA-Codename-75567-V1
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: AiAF/Codename-75567-Pretrainin.jsonl
type: completion
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/qlora-out
save_total_limit: 10
adapter: qlora
lora_model_dir:
lora_r: 256
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
sequence_len: 512
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project: "LLM-Pretraining"
wandb_watch: "all"
wandb_name: "QLoRA-Codename-75567-V1"
wandb_log_model: "false"
wandb_run_id: "QLoRA-Codename-75567-V1"
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 10
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 1
evals_per_epoch: 5
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
Pretrained-QLoRA-Codename-75567-V1
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the AiAF/Codename-75567-Pretrainin.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 1.6938
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.8916 | 0.3333 | 1 | 1.8880 |
2.017 | 0.6667 | 2 | 1.8847 |
1.9119 | 1.0 | 3 | 1.8795 |
1.9716 | 1.3333 | 4 | 1.8711 |
1.8532 | 1.6667 | 5 | 1.8601 |
1.9759 | 2.0 | 6 | 1.8488 |
1.856 | 2.3333 | 7 | 1.8357 |
1.8404 | 2.6667 | 8 | 1.8241 |
1.976 | 3.0 | 9 | 1.8131 |
1.8504 | 3.3333 | 10 | 1.8012 |
1.8574 | 3.6667 | 11 | 1.7860 |
1.8194 | 4.0 | 12 | 1.7749 |
1.8022 | 4.3333 | 13 | 1.7646 |
1.7632 | 4.6667 | 14 | 1.7525 |
1.8326 | 5.0 | 15 | 1.7440 |
1.7696 | 5.3333 | 16 | 1.7325 |
1.8039 | 5.6667 | 17 | 1.7257 |
1.7019 | 6.0 | 18 | 1.7164 |
1.7878 | 6.3333 | 19 | 1.7132 |
1.718 | 6.6667 | 20 | 1.7093 |
1.6994 | 7.0 | 21 | 1.7049 |
1.785 | 7.3333 | 22 | 1.6996 |
1.6659 | 7.6667 | 23 | 1.6977 |
1.7241 | 8.0 | 24 | 1.6970 |
1.7397 | 8.3333 | 25 | 1.6952 |
1.6894 | 8.6667 | 26 | 1.6934 |
1.723 | 9.0 | 27 | 1.6932 |
1.7999 | 9.3333 | 28 | 1.6927 |
1.6715 | 9.6667 | 29 | 1.6941 |
1.6696 | 10.0 | 30 | 1.6938 |
Framework versions
- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for AiAF/Pretrained-QLoRA-Codename-75567-V1
Base model
mistralai/Mistral-7B-v0.3
Finetuned
mistralai/Mistral-7B-Instruct-v0.3