AiAF commited on
Commit
630311a
·
verified ·
1 Parent(s): c499fcd

End of training

Browse files
Files changed (1) hide show
  1. README.md +183 -0
README.md ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ datasets:
9
+ - AiAF/Codename-75567-Pretrainin.jsonl
10
+ model-index:
11
+ - name: Pretrained-QLoRA-Codename-75567-V1
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
19
+ <details><summary>See axolotl config</summary>
20
+
21
+ axolotl version: `0.8.0.dev0`
22
+ ```yaml
23
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
24
+ # optionally might have model_type or tokenizer_type
25
+ model_type: MistralForCausalLM
26
+ tokenizer_type: LlamaTokenizer
27
+ # Automatically upload checkpoint and final model to HF
28
+ hub_model_id: AiAF/Pretrained-QLoRA-Codename-75567-V1
29
+
30
+ load_in_8bit: false
31
+ load_in_4bit: true
32
+ strict: false
33
+
34
+ datasets:
35
+ - path: AiAF/Codename-75567-Pretrainin.jsonl
36
+ type: completion
37
+
38
+ dataset_prepared_path: last_run_prepared
39
+ val_set_size: 0.05
40
+ output_dir: ./outputs/qlora-out
41
+ save_total_limit: 10
42
+
43
+ adapter: qlora
44
+ lora_model_dir:
45
+ lora_r: 256
46
+ lora_alpha: 64
47
+ lora_dropout: 0.05
48
+ lora_target_linear: true
49
+ lora_fan_in_fan_out:
50
+ lora_target_modules:
51
+ - gate_proj
52
+ - down_proj
53
+ - up_proj
54
+ - q_proj
55
+ - v_proj
56
+ - k_proj
57
+ - o_proj
58
+
59
+ sequence_len: 512
60
+ sample_packing: true
61
+ pad_to_sequence_len: true
62
+ eval_sample_packing: false
63
+
64
+ wandb_project: "LLM-Pretraining"
65
+ wandb_watch: "all"
66
+ wandb_name: "QLoRA-Codename-75567-V1"
67
+ wandb_log_model: "false"
68
+ wandb_run_id: "QLoRA-Codename-75567-V1"
69
+
70
+ gradient_accumulation_steps: 4
71
+ micro_batch_size: 2
72
+ num_epochs: 10
73
+ optimizer: adamw_bnb_8bit
74
+ lr_scheduler: cosine
75
+ learning_rate: 0.000005
76
+
77
+ train_on_inputs: false
78
+ group_by_length: false
79
+ bf16: auto
80
+ fp16:
81
+ tf32: false
82
+
83
+ gradient_checkpointing: true
84
+ early_stopping_patience:
85
+ resume_from_checkpoint:
86
+ local_rank:
87
+ logging_steps: 1
88
+ xformers_attention:
89
+ flash_attention: true
90
+
91
+ warmup_steps: 1
92
+ evals_per_epoch: 5
93
+ eval_table_size:
94
+ eval_max_new_tokens: 128
95
+ saves_per_epoch: 1
96
+ debug:
97
+ deepspeed:
98
+ weight_decay: 0.0
99
+ fsdp:
100
+ fsdp_config:
101
+ special_tokens:
102
+
103
+ ```
104
+
105
+ </details><br>
106
+
107
+ # Pretrained-QLoRA-Codename-75567-V1
108
+
109
+ This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the AiAF/Codename-75567-Pretrainin.jsonl dataset.
110
+ It achieves the following results on the evaluation set:
111
+ - Loss: 1.6938
112
+
113
+ ## Model description
114
+
115
+ More information needed
116
+
117
+ ## Intended uses & limitations
118
+
119
+ More information needed
120
+
121
+ ## Training and evaluation data
122
+
123
+ More information needed
124
+
125
+ ## Training procedure
126
+
127
+ ### Training hyperparameters
128
+
129
+ The following hyperparameters were used during training:
130
+ - learning_rate: 5e-06
131
+ - train_batch_size: 2
132
+ - eval_batch_size: 2
133
+ - seed: 42
134
+ - gradient_accumulation_steps: 4
135
+ - total_train_batch_size: 8
136
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
137
+ - lr_scheduler_type: cosine
138
+ - lr_scheduler_warmup_steps: 2
139
+ - num_epochs: 10.0
140
+
141
+ ### Training results
142
+
143
+ | Training Loss | Epoch | Step | Validation Loss |
144
+ |:-------------:|:------:|:----:|:---------------:|
145
+ | 1.8916 | 0.3333 | 1 | 1.8880 |
146
+ | 2.017 | 0.6667 | 2 | 1.8847 |
147
+ | 1.9119 | 1.0 | 3 | 1.8795 |
148
+ | 1.9716 | 1.3333 | 4 | 1.8711 |
149
+ | 1.8532 | 1.6667 | 5 | 1.8601 |
150
+ | 1.9759 | 2.0 | 6 | 1.8488 |
151
+ | 1.856 | 2.3333 | 7 | 1.8357 |
152
+ | 1.8404 | 2.6667 | 8 | 1.8241 |
153
+ | 1.976 | 3.0 | 9 | 1.8131 |
154
+ | 1.8504 | 3.3333 | 10 | 1.8012 |
155
+ | 1.8574 | 3.6667 | 11 | 1.7860 |
156
+ | 1.8194 | 4.0 | 12 | 1.7749 |
157
+ | 1.8022 | 4.3333 | 13 | 1.7646 |
158
+ | 1.7632 | 4.6667 | 14 | 1.7525 |
159
+ | 1.8326 | 5.0 | 15 | 1.7440 |
160
+ | 1.7696 | 5.3333 | 16 | 1.7325 |
161
+ | 1.8039 | 5.6667 | 17 | 1.7257 |
162
+ | 1.7019 | 6.0 | 18 | 1.7164 |
163
+ | 1.7878 | 6.3333 | 19 | 1.7132 |
164
+ | 1.718 | 6.6667 | 20 | 1.7093 |
165
+ | 1.6994 | 7.0 | 21 | 1.7049 |
166
+ | 1.785 | 7.3333 | 22 | 1.6996 |
167
+ | 1.6659 | 7.6667 | 23 | 1.6977 |
168
+ | 1.7241 | 8.0 | 24 | 1.6970 |
169
+ | 1.7397 | 8.3333 | 25 | 1.6952 |
170
+ | 1.6894 | 8.6667 | 26 | 1.6934 |
171
+ | 1.723 | 9.0 | 27 | 1.6932 |
172
+ | 1.7999 | 9.3333 | 28 | 1.6927 |
173
+ | 1.6715 | 9.6667 | 29 | 1.6941 |
174
+ | 1.6696 | 10.0 | 30 | 1.6938 |
175
+
176
+
177
+ ### Framework versions
178
+
179
+ - PEFT 0.14.0
180
+ - Transformers 4.49.0
181
+ - Pytorch 2.6.0+cu124
182
+ - Datasets 3.2.0
183
+ - Tokenizers 0.21.0