asnassar's picture
Update README.md
56b796c verified
|
raw
history blame
6.84 kB
metadata
library_name: transformers
license: apache-2.0
language:
  - en
base_model:
  - HuggingFaceTB/SmolVLM-256M-Instruct
pipeline_tag: image-text-to-text

SmolDocling-256M-preview

SmolDocling is a multimodal Image-Text-to-Text model designed for efficient document conversion. It retains Docling's most popular features while ensuring full compatibility with Docling through seamless support for DoclingDocuments.

🚀 Features:

  • 🏷️ DocTags for Efficient Tokenization – Introduces DocTags an efficient and minimal representation for documents that is fully compatible with DoclingDocuments.
  • 🔍 OCR (Optical Character Recognition) – Extracts text accurately from images.
  • 📐 Layout and Localization – Preserves document structure and document element bounding boxes.
  • 💻 Code Recognition – Detects and formats code blocks including identation.
  • 🔢 Formula Recognition – Identifies and processes mathematical expressions.
  • 📊 Chart Recognition – Extracts and interprets chart data.
  • 📑 Table Recognition – Supports column and row headers for structured table extraction.
  • 🖼️ Figure Classification – Differentiates figures and graphical elements.
  • 📝 Caption Correspondence – Links captions to relevant images and figures.
  • 📜 List Grouping – Organizes and structures list elements correctly.
  • 📄 Full-Page Conversion – Processes entire pages for comprehensive document conversion including all page elements (code, equations, tables, charts etc.)
  • 🔲 OCR with Bounding Boxes – OCR regions using a bounding box.
  • 📂 General Document Processing – Trained for non-scientific documents and scientific.
  • 🔄 Seamless Docling Integration – Import into Docling and export in multiple formats.
  • 📚 Multi-Page & Full Document ConversionComing soon! 🚧

How to get started

You can use transformers or docling to perform inference:

Inference using Docling

print(generated_texts[0])
Single image inference using Tranformers
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
from transformers.image_utils import load_image

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Load images
image = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")

# Initialize processor and model
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
model = AutoModelForVision2Seq.from_pretrained(
    "ds4sd/SmolDocling-256M-preview",
    torch_dtype=torch.bfloat16,
    _attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager",
).to(DEVICE)

# Create input messages
messages = [
    {
        "role": "user",
        "content": [
            {"type": "image"},
            {"type": "text", "text": "Convert this page to docling."}
        ]
    },
]

# Prepare inputs
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[image], return_tensors="pt")
inputs = inputs.to(DEVICE)

# Generate outputs
generated_ids = model.generate(**inputs, max_new_tokens=500)
generated_texts = processor.batch_decode(
    generated_ids,
    skip_special_tokens=True,
)

print(generated_texts[0])
🚀 Fast Batch Inference Using VLLM
!pip install vllm

import time
import os
from vllm import LLM, SamplingParams
from PIL import Image

# Configuration
MODEL_PATH = "ds4sd/SmolDocling-256M-preview"
IMAGE_DIR = "images_dir"
OUTPUT_DIR = "output_pred_dir"
PROMPT_TEXT = "Convert page to Docling."

# Ensure output directory exists
os.makedirs(OUTPUT_DIR, exist_ok=True)

# Initialize LLM
llm = LLM(model=MODEL_PATH, limit_mm_per_prompt={"image": 1})

sampling_params = SamplingParams(
    temperature=0.0,
    max_tokens=8192)

chat_template = f"<|im_start|>User:<image>{PROMPT_TEXT}<end_of_utterance>\nAssistant:"

image_files = sorted([f for f in os.listdir(IMAGE_DIR) if f.lower().endswith((".png", ".jpg", ".jpeg"))])

start_time = time.time()
total_tokens = 0

for idx, img_file in enumerate(image_files, 1):
    img_path = os.path.join(IMAGE_DIR, img_file)
    image = Image.open(img_path).convert("RGB")

    llm_input = {"prompt": chat_template, "multi_modal_data": {"image": image}}
    output = llm.generate([llm_input], sampling_params=sampling_params)[0]
    
    output_text = output.outputs[0].text
    output_filename = os.path.splitext(img_file)[0] + ".dt"
    output_path = os.path.join(OUTPUT_DIR, output_filename)

    with open(output_path, "w", encoding="utf-8") as f:
        f.write(output_text)

print(f"Total time: {time.time() - start_time:.2f} sec")

DocTags

Image description DocTags create a clear and structured system of tags and rules that separate text from the document's structure. This makes things easier for Image-to-Sequence models by reducing confusion. On the other hand, converting directly to formats like HTML or Markdown can be messy—it often loses details, doesn’t clearly show the document’s layout, and increases the number of tokens, making processing less efficient. DocTags are integrated with Docling, which allows export to HTML, Markdown, and JSON. These exports can be offloaded to the CPU, reducing token generation overhead and improving efficiency.

Supported Instructions

Instruction Description
Full conversion Convert this page to docling.
Chart Convert chart to table (e.g., <chart>).
Formula Convert formula to LaTeX (e.g., <formula>).
Code Convert code to text (e.g., <code>).
Table Convert table to OTSL (e.g., <otsl>).
No-Code Actions/Pipelines OCR the text in a specific location: <loc_155><loc_233><loc_206><loc_237>
Identify element at: <loc_247><loc_482><10c_252><loc_486>
Find all 'text' elements on the page, retrieve all section headers.
Detect footer elements on the page.
  • More Coming soon! 🚧

Model Summary

  • Developed by: Docling Team
  • Model type: Multi-modal model (image+text)
  • Language(s) (NLP): English
  • License: Apache 2.0
  • Finetuned from model: Based on Idefics3 (see technical summary)

Repository: [More Information Needed] Paper [optional]: [More Information Needed] Demo [optional]: [More Information Needed]