File size: 6,843 Bytes
efb3e16
 
3d3bb6a
 
 
 
 
 
efb3e16
 
3d3bb6a
efb3e16
3d3bb6a
 
 
 
 
 
 
 
 
 
 
 
 
c1a43cf
 
848bd04
3d3bb6a
 
efb3e16
 
 
848bd04
efb3e16
ee67c58
efb3e16
bc66c00
 
 
 
 
 
 
 
 
 
 
efb3e16
ee67c58
 
 
 
 
efb3e16
ee67c58
efb3e16
ee67c58
 
efb3e16
ee67c58
 
 
 
 
 
 
efb3e16
ee67c58
 
 
 
 
 
 
 
 
 
efb3e16
ee67c58
 
 
 
efb3e16
ee67c58
 
 
 
 
 
efb3e16
ee67c58
63a8850
bc66c00
 
 
 
 
 
 
 
 
 
 
 
af4ca08
bc66c00
 
 
 
 
af4ca08
bc66c00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af4ca08
82305a1
 
04e22bf
56b796c
 
af4ca08
c15d2cc
60b40ea
 
 
d456bf8
 
 
 
de6b20e
d456bf8
60b40ea
 
af4ca08
 
c15d2cc
23d43f8
06310a9
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
---
library_name: transformers
license: apache-2.0
language:
- en
base_model:
- HuggingFaceTB/SmolVLM-256M-Instruct
pipeline_tag: image-text-to-text
---

### SmolDocling-256M-preview

SmolDocling is a multimodal Image-Text-to-Text model designed for efficient document conversion. It retains Docling's most popular features while ensuring full compatibility with Docling through seamless support for **DoclingDocuments**.

### 🚀 Features:  
- 🏷️ **DocTags for Efficient Tokenization** – Introduces DocTags an efficient and minimal representation for documents that is fully compatible with **DoclingDocuments**.  
- 🔍 **OCR (Optical Character Recognition)** – Extracts text accurately from images.  
- 📐 **Layout and Localization** – Preserves document structure and document element **bounding boxes**.  
- 💻 **Code Recognition** – Detects and formats code blocks including identation.  
- 🔢 **Formula Recognition** – Identifies and processes mathematical expressions.  
- 📊 **Chart Recognition** – Extracts and interprets chart data.  
- 📑 **Table Recognition** – Supports column and row headers for structured table extraction.  
- 🖼️ **Figure Classification** – Differentiates figures and graphical elements.  
- 📝 **Caption Correspondence** – Links captions to relevant images and figures.  
- 📜 **List Grouping** – Organizes and structures list elements correctly.  
- 📄 **Full-Page Conversion** – Processes entire pages for comprehensive document conversion including all page elements (code, equations, tables, charts etc.) 
- 🔲 **OCR with Bounding Boxes** – OCR regions using a bounding box.
- 📂 **General Document Processing** – Trained for non-scientific documents and scientific.  
- 🔄 **Seamless Docling Integration** – Import into **Docling** and export in multiple formats.
- 📚 **Multi-Page & Full Document Conversion***Coming soon!* 🚧



## How to get started

You can use transformers or docling to perform inference:

<details>
<summary>Inference using Docling</summary>

```python

print(generated_texts[0])
```
</details>

<details>
<summary>Single image inference using Tranformers</summary>

```python
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
from transformers.image_utils import load_image

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Load images
image = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")

# Initialize processor and model
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
model = AutoModelForVision2Seq.from_pretrained(
    "ds4sd/SmolDocling-256M-preview",
    torch_dtype=torch.bfloat16,
    _attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager",
).to(DEVICE)

# Create input messages
messages = [
    {
        "role": "user",
        "content": [
            {"type": "image"},
            {"type": "text", "text": "Convert this page to docling."}
        ]
    },
]

# Prepare inputs
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[image], return_tensors="pt")
inputs = inputs.to(DEVICE)

# Generate outputs
generated_ids = model.generate(**inputs, max_new_tokens=500)
generated_texts = processor.batch_decode(
    generated_ids,
    skip_special_tokens=True,
)

print(generated_texts[0])
```
</details>

<details>
<summary> 🚀 Fast Batch Inference Using VLLM</summary>

```python
!pip install vllm

import time
import os
from vllm import LLM, SamplingParams
from PIL import Image

# Configuration
MODEL_PATH = "ds4sd/SmolDocling-256M-preview"
IMAGE_DIR = "images_dir"
OUTPUT_DIR = "output_pred_dir"
PROMPT_TEXT = "Convert page to Docling."

# Ensure output directory exists
os.makedirs(OUTPUT_DIR, exist_ok=True)

# Initialize LLM
llm = LLM(model=MODEL_PATH, limit_mm_per_prompt={"image": 1})

sampling_params = SamplingParams(
    temperature=0.0,
    max_tokens=8192)

chat_template = f"<|im_start|>User:<image>{PROMPT_TEXT}<end_of_utterance>\nAssistant:"

image_files = sorted([f for f in os.listdir(IMAGE_DIR) if f.lower().endswith((".png", ".jpg", ".jpeg"))])

start_time = time.time()
total_tokens = 0

for idx, img_file in enumerate(image_files, 1):
    img_path = os.path.join(IMAGE_DIR, img_file)
    image = Image.open(img_path).convert("RGB")

    llm_input = {"prompt": chat_template, "multi_modal_data": {"image": image}}
    output = llm.generate([llm_input], sampling_params=sampling_params)[0]
    
    output_text = output.outputs[0].text
    output_filename = os.path.splitext(img_file)[0] + ".dt"
    output_path = os.path.join(OUTPUT_DIR, output_filename)

    with open(output_path, "w", encoding="utf-8") as f:
        f.write(output_text)

print(f"Total time: {time.time() - start_time:.2f} sec")
```
</details>

## DocTags

<img src="https://huggingface.co/ds4sd/SmolDocling-256M-preview/resolve/main/assets/doctags_v2.png" width="800" height="auto" alt="Image description">
DocTags create a clear and structured system of tags and rules that separate text from the document's structure. This makes things easier for Image-to-Sequence models by reducing confusion. On the other hand, converting directly to formats like HTML or Markdown can be messy—it often loses details, doesn’t clearly show the document’s layout, and increases the number of tokens, making processing less efficient.
DocTags are integrated with Docling, which allows export to HTML, Markdown, and JSON. These exports can be offloaded to the CPU, reducing token generation overhead and improving efficiency.

## Supported Instructions  
| Instruction | Description |
| :---: | :---: |
| Full conversion | Convert this page to docling. |
| Chart | Convert chart to table (e.g., &lt;chart&gt;). |
| Formula | Convert formula to LaTeX (e.g., &lt;formula&gt;). |
| Code | Convert code to text (e.g., &lt;code&gt;). |
| Table | Convert table to OTSL (e.g., &lt;otsl&gt;). |
| No-Code Actions/Pipelines | OCR the text in a specific location: &lt;loc_155&gt;&lt;loc_233&gt;&lt;loc_206&gt;&lt;loc_237&gt; |
|  | Identify element at: &lt;loc_247&gt;&lt;loc_482&gt;&lt;10c_252&gt;&lt;loc_486&gt; |
|  | Find all 'text' elements on the page, retrieve all section headers. |
|  | Detect footer elements on the page. |


- More *Coming soon!* 🚧

#### Model Summary

- **Developed by:** Docling Team
- **Model type:** Multi-modal model (image+text)
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Finetuned from model:** Based on [Idefics3](https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3) (see technical summary)

**Repository:** [More Information Needed]
**Paper [optional]:** [More Information Needed]
**Demo [optional]:** [More Information Needed]