leaderboard-pr-bot's picture
Adding Evaluation Results
d48f361 verified
|
raw
history blame
5.3 kB
---
language:
- multilingual
license: gemma
library_name: transformers
tags:
- nlp
- code
base_model: google/gemma-2-2b-jpn-it
license_link: https://ai.google.dev/gemma/terms
pipeline_tag: text-generation
quantized_by: ymcki
widget:
- messages:
- role: user
content: Can you provide ways to eat combinations of bananas and dragonfruits?
model-index:
- name: gemma-2-2b-jpn-it-abliterated-18
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 0.0
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ymcki/gemma-2-2b-jpn-it-abliterated-18
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 2.48
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ymcki/gemma-2-2b-jpn-it-abliterated-18
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0.0
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ymcki/gemma-2-2b-jpn-it-abliterated-18
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 1.23
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ymcki/gemma-2-2b-jpn-it-abliterated-18
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2.08
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ymcki/gemma-2-2b-jpn-it-abliterated-18
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 1.86
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ymcki/gemma-2-2b-jpn-it-abliterated-18
name: Open LLM Leaderboard
---
Original model: https://huggingface.co/google/gemma-2-2b-jpn-it
## Prompt format
```
<start_of_turn>user
{prompt}<end_of_turn>
<start_of_turn>model
<end_of_turn>
<start_of_turn>model
```
Note that this model does not support a System prompt.
This is abliterated model of [`google/gemma-2-2b-jpn-it](https://huggingface.co/google/gemma-2-2b-jpn-it) using the
[method](https://medium.com/@mlabonne/uncensor-any-llm-with-abliteration-d30148b7d43e)
described by mlabonne.
Layer 18 of the original model was chosen for abliteration.
I also created another layer 17 abliterated model for comparison.
It is uploaded here to be evaluated by the LLM Leaderboard to see how brain damaged it
is compared to the original model.
ORPO fine tuning is currently underway to see if it can regain its sanity. You can play with this model first or wait until I am done with the fine tuning.
## How to run this model
```py
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model_id = "gemma-2-2b-jpn-it-abliterated-18"
dtype = torch.bfloat16
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="cuda",
torch_dtype=dtype,)
chat = [
{ "role": "user", "content": "Write a hello world program" },
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
```
## Downloading using huggingface-cli
First, make sure you have hugginface-cli installed:
```
pip install -U "huggingface_hub[cli]"
```
Then, you can target the specific file you want:
```
huggingface-cli download ymcki/gemma-2-2b-jpn-it-abliterated-18 --include "*" --local-dir ./
```
## Credits
Thank you mlabonne for describing his abliteration method.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ymcki__gemma-2-2b-jpn-it-abliterated-18)
| Metric |Value|
|-------------------|----:|
|Avg. | 1.28|
|IFEval (0-Shot) | 0.00|
|BBH (3-Shot) | 2.48|
|MATH Lvl 5 (4-Shot)| 0.00|
|GPQA (0-shot) | 1.23|
|MuSR (0-shot) | 2.08|
|MMLU-PRO (5-shot) | 1.86|