데이터 셋
LIMO
- GAIR/LIMO (영어, 원본)
LIMO 한국어 번역
- exp-models/GAIR-LIMO-KOREAN (한국어 번역)
- junnei/ko-limo (한국어 번역)
특이사항
- 원래 LIMO에서는 15 epoch 학습을 수행함
- 영어1+한국어2 데이터 셋을 섞은 후 5 epoch 학습시켜 원래 학습 방법과 유사한 횟수만큼, 그러나 약간의 변형이 있도록 학습시키려고 함
- 그러나 정성 평가에서 4 epoch 시점의 checkpoint가 가장 성능이 좋아 보였음
Training Details
- 4xH200 SXM, 13.5 Hours
Axolotl config
base_model: beomi/EXAONE-3.5-32B-Instruct-Llamafied
model_type: AutoModelForCausalLM
tokenizer_config: beomi/EXAONE-3.5-32B-Instruct-Llamafied
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: werty1248/kk_oo_llliiimmmooo
field_messages: conversations
type: chat_template
chat_template: tokenizer_default
dataset_prepared_path: ./data_preparation
output_dir: /workspace/data
hf_use_auth_token: true
sequence_len: 32768
sample_packing: false
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
wandb_project:
#wandb_entity:
#wandb_watch:
wandb_name:
#wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 5
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 5.0e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.05
eval_table_size:
save_total_limit: 2
deepspeed: ./deepspeed_configs/zero3_bf16.json
special_tokens:
pad_token: "[|endofturn|]"
- Downloads last month
- 89
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.