Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: true
base_model: unsloth/Qwen2.5-14B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 85acffbcc782cc1a_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/85acffbcc782cc1a_train_data.json
  type:
    field_input: all_generated_responses
    field_instruction: prompt
    field_output: prompt_id
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: true
hub_model_id: tuantmdev/23e55be0-cef4-4650-9960-f4f4ce2c611f
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 1e-4
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 40
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 400
micro_batch_size: 2
mlflow_experiment_name: /tmp/85acffbcc782cc1a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
save_strategy: steps
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1047ecd6-ec43-4bd8-b951-061176096c9a
wandb_project: Gradients-On-Demand
wandb_run: unknown
wandb_runid: 1047ecd6-ec43-4bd8-b951-061176096c9a
warmup_steps: 80
weight_decay: 0.0
xformers_attention: null

23e55be0-cef4-4650-9960-f4f4ce2c611f

This model is a fine-tuned version of unsloth/Qwen2.5-14B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 80
  • training_steps: 400

Training results

Training Loss Epoch Step Validation Loss
No log 0.0003 1 nan
0.0 0.0138 50 nan
473396.8 0.0277 100 nan
342.8485 0.0415 150 nan
0.3044 0.0554 200 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
11
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for tuantmdev/23e55be0-cef4-4650-9960-f4f4ce2c611f

Base model

Qwen/Qwen2.5-14B
Adapter
(172)
this model