Whisper Small He with punctuation- Tom Apt

This model is a fine-tuned version of openai/whisper-small on the Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6067
  • Wer Ortho: 44.9468
  • Wer: 41.3437

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
1.0739 0.2242 50 0.9126 51.8174 48.0993
0.7849 0.4484 100 0.7600 49.1209 45.4251
0.6366 0.6726 150 0.6490 47.3700 43.7454
0.5582 0.8969 200 0.6033 46.5499 42.8098
0.3775 1.1211 250 0.6004 46.1584 42.2941
0.3617 1.3453 300 0.5918 46.5352 42.8687
0.3631 1.5695 350 0.5849 45.6339 41.7784
0.3332 1.7937 400 0.5885 44.9690 40.9754
0.3093 2.0179 450 0.5808 44.5109 40.8944
0.1865 2.2422 500 0.6067 44.9468 41.3437

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
91
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for tomtom5/whisper-small-he

Finetuned
(2392)
this model

Dataset used to train tomtom5/whisper-small-he

Evaluation results