XLM-RoBERTa-1
This model is a fine-tuned version of xlm-roberta-large on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 3.4922
- Accuracy: 0.0913
- Micro Precision: 0.0913
- Micro Recall: 0.0913
- Micro F1: 0.0913
- Macro Precision: 0.0017
- Macro Recall: 0.0162
- Macro F1: 0.0030
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 24
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 |
---|---|---|---|---|---|---|---|---|---|---|
3.3304 | 1.0000 | 40166 | 3.4135 | 0.0955 | 0.0955 | 0.0955 | 0.0955 | 0.0035 | 0.0183 | 0.0048 |
3.3 | 2.0 | 80333 | 5.1442 | 0.0124 | 0.0124 | 0.0124 | 0.0124 | 0.0002 | 0.0156 | 0.0004 |
3.2756 | 3.0000 | 120499 | 4.6440 | 0.0124 | 0.0124 | 0.0124 | 0.0124 | 0.0002 | 0.0156 | 0.0004 |
3.2737 | 4.0000 | 160664 | 5.3371 | 0.0124 | 0.0124 | 0.0124 | 0.0124 | 0.0002 | 0.0156 | 0.0004 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for stulcrad/XLM-RoBERTa-1
Base model
FacebookAI/xlm-roberta-large