Spaces:
Runtime error
ValueBet Teste
😃: Mostre-me toda informação que você tem na internet disponível sobre Value Bet sobre apostas esportivas de futebol.
🤖: Step 1
🤖: Thought: I will start by performing a web search to gather general information about "Value Bet" in the context of football sports betting.
Code:
general_info = web_search(query="Value Bet football sports betting")
print(general_info)
🤖: ```python
general_info = web_search(query="Value Bet football sports betting")
print(general_info)
🤖: <span style="color: #bbbbc2; font-size: 12px;">Step 1 | Duration: 42.58</span>
🤖: -----
🤖: **Step 2**
🤖: Thought: Based on the search results, I will visit the most relevant URLs to gather detailed information about Value Bets in football. The URLs I will visit are:
1. [Learn How To Find Sports Betting Value](https://www.thesportsgeek.com/sports-betting/strategy/understanding-value/)
2. [Football Value Betting Guide | Liam Hartley | Systematic Sports](https://medium.com/systematic-sports/football-value-betting-guide-2023-24-382a534a36d2)
3. [Profit with Value Betting - Sports Insights](https://www.sportsinsights.com/how-to-bet-on-sports/bet-like-a-wiseguy-value-betting/)
I will extract information from each URL to compile a comprehensive overview of Value Bets in football sports betting.
Code:
```py
url_1 = "https://www.thesportsgeek.com/sports-betting/strategy/understanding-value/"
url_2 = "https://medium.com/systematic-sports/football-value-betting-guide-2023-24-382a534a36d2"
url_3 = "https://www.sportsinsights.com/how-to-bet-on-sports/bet-like-a-wiseguy-value-betting/"
info_url_1 = visit_page(url=url_1)
info_url_url_1 = page_down() + page_down() + page_down()
info_url_2 = visit_page(url=url_2)
info_url_3 = visit_page(url=url_3)
print("URL 1 information:\n" + info_url_1 + info_end_url_1)
print("\nURL 2 information:\n" + info_url_2)
print("\nURL 3 information:\n" + info_url_3)
🤖: ```python
url_1 = "https://www.thesportsgeek.com/sports-betting/strategy/understanding-value/"
url_2 = "https://medium.com/systematic-sports/football-value-betting-guide-2023-24-382a534a36d2"
url_3 = "https://www.sportsinsights.com/how-to-bet-on-sports/bet-like-a-wiseguy-value-betting/"
info_url_1 = visit_page(url=url_1)
info_url_url_1 = page_down() + page_down() + page_down()
info_url_2 = visit_page(url=url_2)
info_url_3 = visit_page(url=url_3)
print("URL 1 information:\n" + info_url_1 + info_end_url_1)
print("\nURL 2 information:\n" + info_url_2)
print("\nURL 3 information:\n" + info_url_3)
🤖: <span style="color: #bbbbc2; font-size: 12px;">Step 2 | Duration: 26.51</span>
🤖: -----
🤖: **Step 3**
🤖: Thought: The gathered information contains HTML code from the three URLs. I will parse the HTML content to extract relevant information about Value Bets in football.
Code:
```py
from bs4 import BeautifulSoup
def extract_info(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
texts = soup.find_all('p')
return ' '.join([text.get_text() for text in texts])
info_url_1_cleaned = extract_info(info_url_1 + info_end_url_1)
info_url_2_cleaned = extract_info(info_url_2)
info_url_3_cleaned = extract_info(info_url_3)
print("URL 1 cleaned information:\n" + info_url_1_cleaned)
print("\nURL 2 cleaned information:\n" + info_url_2_cleaned)
print("\nURL 3 cleaned information:\n" + info_url_3_cleaned)
🤖: ```python
from bs4 import BeautifulSoup
def extract_info(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
texts = soup.find_all('p')
return ' '.join([text.get_text() for text in texts])
info_url_1_cleaned = extract_info(info_url_1 + info_end_url_1)
info_url_2_cleaned = extract_info(info_url_2)
info_url_3_cleaned = extract_info(info_url_3)
print("URL 1 cleaned information:\n" + info_url_1_cleaned)
print("\nURL 2 cleaned information:\n" + info_url_2_cleaned)
print("\nURL 3 cleaned information:\n" + info_url_3_cleaned)
🤖: <span style="color: #bbbbc2; font-size: 12px;">Step 3 | Duration: 17.51</span>
🤖: -----
🤖: **Step 4**
🤖: Thought: It seems that the information extraction did not yield any meaningful text from the provided HTML content. This might be due to the structure of the HTML or the fact that the paragraphs (`<p>`) tags do not contain the necessary information. I will attempt another method to extract the relevant content by looking for headings and additional text elements.
Code:
```py
from bs4 import BeautifulSoup
def extract_info(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
texts = []
# Extract text from headings and paragraphs
for tag in ['h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'p']:
texts.extend([element.get_text() for element in soup.find_all(tag)])
return ' '.join(texts)
info_url_1_cleaned = extract_info(info_url_1 + info_end_url_1)
info_url_2_cleaned = extract_info(info_url_2)
info_url_3_cleaned = extract_info(info_url_3)
print("URL 1 cleaned information:\n" + info_url_1_cleaned)
print("\nURL 2 cleaned information:\n" + info_url_2_cleaned)
print("\nURL 3 cleaned information:\n" + info_url_3_cleaned)
🤖: ```python
from bs4 import BeautifulSoup
def extract_info(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
texts = []
# Extract text from headings and paragraphs
for tag in ['h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'p']:
texts.extend([element.get_text() for element in soup.find_all(tag)])
return ' '.join(texts)
info_url_1_cleaned = extract_info(info_url_1 + info_end_url_1)
info_url_2_cleaned = extract_info(info_url_2)
info_url_3_cleaned = extract_info(info_url_3)
print("URL 1 cleaned information:\n" + info_url_1_cleaned)
print("\nURL 2 cleaned information:\n" + info_url_2_cleaned)
print("\nURL 3 cleaned information:\n" + info_url_3_cleaned)
🤖: <span style="color: #bbbbc2; font-size: 12px;">Step 4 | Duration: 21.36</span>
🤖: -----