Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import gradio as gr | |
import re | |
# Check if GPU is available and use it if possible | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# Load the model and tokenizer | |
mme_model_name = 'sperkins2116/ConfliBERT-BC-MMEs' | |
mme_model = AutoModelForSequenceClassification.from_pretrained(mme_model_name).to(device) | |
mme_tokenizer = AutoTokenizer.from_pretrained(mme_model_name) | |
# Define the class names for text classification | |
class_names = ['Negative', 'Positive'] | |
def handle_error_message(e, default_limit=512): | |
error_message = str(e) | |
pattern = re.compile(r"The size of tensor a \((\d+)\) must match the size of tensor b \((\d+)\)") | |
match = pattern.search(error_message) | |
if match: | |
number_1, number_2 = match.groups() | |
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>" | |
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size is larger than model limits of {default_limit}</span>" | |
def mme_classification(text): | |
try: | |
inputs = mme_tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(device) | |
with torch.no_grad(): | |
outputs = mme_model(**inputs) | |
logits = outputs.logits.squeeze().tolist() | |
predicted_class = torch.argmax(outputs.logits, dim=1).item() | |
confidence = torch.softmax(outputs.logits, dim=1).max().item() * 100 | |
if predicted_class == 1: # Positive class | |
result = f"<span style='color: green; font-weight: bold;'>Positive: The text contains evidence of a multinational military exercise. (Confidence: {confidence:.2f}%)</span>" | |
else: # Negative class | |
result = f"<span style='color: red; font-weight: bold;'>Negative: The text does not contain evidence of a multinational military exercise. (Confidence: {confidence:.2f}%)</span>" | |
return result | |
except Exception as e: | |
return handle_error_message(e) | |
# Define the Gradio interface | |
def chatbot(text): | |
return mme_classification(text) | |
css = """ | |
body { | |
background-color: #f0f8ff; | |
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; | |
color: black; /* Ensure text is visible in dark mode */ | |
} | |
h1 { | |
color: #2e8b57; | |
text-align: center; | |
font-size: 2em; | |
} | |
h2 { | |
color: #ff8c00; | |
text-align: center; | |
font-size: 1.5em; | |
} | |
.gradio-container { | |
max-width: 100%; | |
margin: 10px auto; | |
padding: 10px; | |
background-color: #ffffff; | |
border-radius: 10px; | |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); | |
} | |
.gr-input, .gr-output { | |
background-color: #ffffff; | |
border: 1px solid #ddd; | |
border-radius: 5px; | |
padding: 10px; | |
font-size: 1em; | |
color: black; /* Ensure text is visible in dark mode */ | |
} | |
.gr-title { | |
font-size: 1.5em; | |
font-weight: bold; | |
color: #2e8b57; | |
margin-bottom: 10px; | |
text-align: center; | |
} | |
.gr-description { | |
font-size: 1.2em; | |
color: #ff8c00; | |
margin-bottom: 10px; | |
text-align: center; | |
} | |
.header { | |
display: flex; | |
justify-content: center; | |
align-items: center; | |
padding: 10px; | |
flex-wrap: wrap; | |
} | |
.header-title-center a { | |
font-size: 4em; /* Increased font size */ | |
font-weight: bold; /* Made text bold */ | |
color: darkorange; /* Darker orange color */ | |
text-align: center; | |
display: block; | |
} | |
.gr-button { | |
background-color: #ff8c00; | |
color: white; | |
border: none; | |
padding: 10px 20px; | |
font-size: 1em; | |
border-radius: 5px; | |
cursor: pointer; | |
} | |
.gr-button:hover { | |
background-color: #ff4500; | |
} | |
.footer { | |
text-align: center; | |
margin-top: 10px; | |
font-size: 0.9em; /* Updated font size */ | |
color: black; /* Ensure text is visible in dark mode */ | |
width: 100%; | |
} | |
.footer a { | |
color: #2e8b57; | |
font-weight: bold; | |
text-decoration: none; | |
} | |
.footer a:hover { | |
text-decoration: underline; | |
} | |
.footer .inline { | |
display: inline; | |
color: black; /* Ensure text is visible in dark mode */ | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Row(elem_id="header"): | |
gr.Markdown("<div class='header-title-center'><a href='https://eventdata.utdallas.edu/conflibert/'>ConfliBERT-MME</a></div>", elem_id="header-title-center") | |
gr.Markdown("<span style='color: black;'>Provide the text for MME Classification.</span>") | |
text_input = gr.Textbox(lines=5, placeholder="Enter the text here...", label="Text") | |
output = gr.HTML(label="Output") | |
submit_button = gr.Button("Submit", elem_id="gr-button") | |
submit_button.click(fn=chatbot, inputs=text_input, outputs=output) | |
gr.Markdown("<div class='footer'><a href='https://eventdata.utdallas.edu/'>UTD Event Data</a> | <a href='https://www.utdallas.edu/'>University of Texas at Dallas</a> | <a href='https://www.wvu.edu/'>West Virginia University</a></div>") | |
gr.Markdown("<div class='footer'><span class='inline'>Developed By: <a href='https://www.linkedin.com/in/sultan-alsarra-phd-56977a63/' target='_blank'>Sultan Alsarra</a> | Finetuned By: Spencer Perkins</span></div>") | |
demo.launch(share=True) | |