Spaces:
Sleeping
Sleeping
File size: 5,285 Bytes
b3a5224 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import gradio as gr
import re
# Check if GPU is available and use it if possible
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load the model and tokenizer
mme_model_name = 'sperkins2116/ConfliBERT-BC-MMEs'
mme_model = AutoModelForSequenceClassification.from_pretrained(mme_model_name).to(device)
mme_tokenizer = AutoTokenizer.from_pretrained(mme_model_name)
# Define the class names for text classification
class_names = ['Negative', 'Positive']
def handle_error_message(e, default_limit=512):
error_message = str(e)
pattern = re.compile(r"The size of tensor a \((\d+)\) must match the size of tensor b \((\d+)\)")
match = pattern.search(error_message)
if match:
number_1, number_2 = match.groups()
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size is larger than model limits of {default_limit}</span>"
def mme_classification(text):
try:
inputs = mme_tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(device)
with torch.no_grad():
outputs = mme_model(**inputs)
logits = outputs.logits.squeeze().tolist()
predicted_class = torch.argmax(outputs.logits, dim=1).item()
confidence = torch.softmax(outputs.logits, dim=1).max().item() * 100
if predicted_class == 1: # Positive class
result = f"<span style='color: green; font-weight: bold;'>Positive: The text contains evidence of a multinational military exercise. (Confidence: {confidence:.2f}%)</span>"
else: # Negative class
result = f"<span style='color: red; font-weight: bold;'>Negative: The text does not contain evidence of a multinational military exercise. (Confidence: {confidence:.2f}%)</span>"
return result
except Exception as e:
return handle_error_message(e)
# Define the Gradio interface
def chatbot(text):
return mme_classification(text)
css = """
body {
background-color: #f0f8ff;
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
color: black; /* Ensure text is visible in dark mode */
}
h1 {
color: #2e8b57;
text-align: center;
font-size: 2em;
}
h2 {
color: #ff8c00;
text-align: center;
font-size: 1.5em;
}
.gradio-container {
max-width: 100%;
margin: 10px auto;
padding: 10px;
background-color: #ffffff;
border-radius: 10px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
.gr-input, .gr-output {
background-color: #ffffff;
border: 1px solid #ddd;
border-radius: 5px;
padding: 10px;
font-size: 1em;
color: black; /* Ensure text is visible in dark mode */
}
.gr-title {
font-size: 1.5em;
font-weight: bold;
color: #2e8b57;
margin-bottom: 10px;
text-align: center;
}
.gr-description {
font-size: 1.2em;
color: #ff8c00;
margin-bottom: 10px;
text-align: center;
}
.header {
display: flex;
justify-content: center;
align-items: center;
padding: 10px;
flex-wrap: wrap;
}
.header-title-center a {
font-size: 4em; /* Increased font size */
font-weight: bold; /* Made text bold */
color: darkorange; /* Darker orange color */
text-align: center;
display: block;
}
.gr-button {
background-color: #ff8c00;
color: white;
border: none;
padding: 10px 20px;
font-size: 1em;
border-radius: 5px;
cursor: pointer;
}
.gr-button:hover {
background-color: #ff4500;
}
.footer {
text-align: center;
margin-top: 10px;
font-size: 0.9em; /* Updated font size */
color: black; /* Ensure text is visible in dark mode */
width: 100%;
}
.footer a {
color: #2e8b57;
font-weight: bold;
text-decoration: none;
}
.footer a:hover {
text-decoration: underline;
}
.footer .inline {
display: inline;
color: black; /* Ensure text is visible in dark mode */
}
"""
with gr.Blocks(css=css) as demo:
with gr.Row(elem_id="header"):
gr.Markdown("<div class='header-title-center'><a href='https://eventdata.utdallas.edu/conflibert/'>ConfliBERT-MME</a></div>", elem_id="header-title-center")
gr.Markdown("<span style='color: black;'>Provide the text for MME Classification.</span>")
text_input = gr.Textbox(lines=5, placeholder="Enter the text here...", label="Text")
output = gr.HTML(label="Output")
submit_button = gr.Button("Submit", elem_id="gr-button")
submit_button.click(fn=chatbot, inputs=text_input, outputs=output)
gr.Markdown("<div class='footer'><a href='https://eventdata.utdallas.edu/'>UTD Event Data</a> | <a href='https://www.utdallas.edu/'>University of Texas at Dallas</a> | <a href='https://www.wvu.edu/'>West Virginia University</a></div>")
gr.Markdown("<div class='footer'><span class='inline'>Developed By: <a href='https://www.linkedin.com/in/sultan-alsarra-phd-56977a63/' target='_blank'>Sultan Alsarra</a> | Finetuned By: Spencer Perkins</span></div>")
demo.launch(share=True)
|