Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -78,7 +78,7 @@ processor = SpeechT5Processor.from_pretrained(checkpoint)
|
|
78 |
|
79 |
|
80 |
def generate_wav_file(text):
|
81 |
-
|
82 |
converted_text = replace_numbers_with_words(text)
|
83 |
cleaned_text = cleanup_text(converted_text)
|
84 |
final_text = normalize_text(cleaned_text)
|
@@ -86,16 +86,18 @@ def generate_wav_file(text):
|
|
86 |
speaker_embeddings = torch.tensor(np.load('speaker_embedding.npy'))
|
87 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
88 |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
91 |
print(f"Error: {e}")
|
92 |
-
return None
|
93 |
-
|
94 |
|
95 |
iface = gr.Interface(
|
96 |
fn=generate_wav_file,
|
97 |
inputs=gr.Textbox(lines=3, label="Enter text to convert to speech"),
|
98 |
-
outputs="
|
99 |
title="Text-to-Speech Technical EN"
|
100 |
)
|
101 |
if __name__ == "__main__":
|
|
|
78 |
|
79 |
|
80 |
def generate_wav_file(text):
|
81 |
+
try:
|
82 |
converted_text = replace_numbers_with_words(text)
|
83 |
cleaned_text = cleanup_text(converted_text)
|
84 |
final_text = normalize_text(cleaned_text)
|
|
|
86 |
speaker_embeddings = torch.tensor(np.load('speaker_embedding.npy'))
|
87 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
88 |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
89 |
+
# Convert the speech to a WAV file
|
90 |
+
output_file = "output.wav"
|
91 |
+
sf.write(output_file, speech.detach().cpu().numpy(), 16000)
|
92 |
+
return output_file # Return the file path for download
|
93 |
+
except Exception as e:
|
94 |
print(f"Error: {e}")
|
95 |
+
return None
|
|
|
96 |
|
97 |
iface = gr.Interface(
|
98 |
fn=generate_wav_file,
|
99 |
inputs=gr.Textbox(lines=3, label="Enter text to convert to speech"),
|
100 |
+
outputs=gr.Audio(type="file", label="Generated Audio"),
|
101 |
title="Text-to-Speech Technical EN"
|
102 |
)
|
103 |
if __name__ == "__main__":
|