Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,101 +1,103 @@
|
|
1 |
-
import torch
|
2 |
-
import re
|
3 |
-
import gradio as gr
|
4 |
-
import soundfile as sf
|
5 |
-
import numpy as np
|
6 |
-
from transformers import SpeechT5HifiGan
|
7 |
-
from IPython.display import Audio
|
8 |
-
from transformers import SpeechT5ForTextToSpeech
|
9 |
-
from transformers import SpeechT5Processor
|
10 |
-
|
11 |
-
# helper function
|
12 |
-
number_words = {
|
13 |
-
0: "zero", 1: "one", 2: "two", 3: "three", 4: "four", 5: "five", 6: "six", 7: "seven", 8: "eight", 9: "nine",
|
14 |
-
10: "ten", 11: "eleven", 12: "twelve", 13: "thirteen", 14: "fourteen", 15: "fifteen", 16: "sixteen", 17: "seventeen",
|
15 |
-
18: "eighteen", 19: "nineteen", 20: "twenty", 30: "thirty", 40: "forty", 50: "fifty", 60: "sixty", 70: "seventy",
|
16 |
-
80: "eighty", 90: "ninety", 100: "hundred", 1000: "thousand"
|
17 |
-
}
|
18 |
-
replacements = [
|
19 |
-
("“", '"'),
|
20 |
-
("”", '"'),
|
21 |
-
("’", ","),
|
22 |
-
("_", " "),
|
23 |
-
("\xa0", " "),
|
24 |
-
("\n", " "),
|
25 |
-
("$","dollar"),
|
26 |
-
("%","percent"),
|
27 |
-
("&","and"),
|
28 |
-
("*","star"),
|
29 |
-
("+","plus"),
|
30 |
-
("—","-")
|
31 |
-
|
32 |
-
]
|
33 |
-
def number_to_words(number):
|
34 |
-
if number < 20:
|
35 |
-
return number_words[number]
|
36 |
-
elif number < 100:
|
37 |
-
tens, unit = divmod(number, 10)
|
38 |
-
return number_words[tens * 10] + (" " + number_words[unit] if unit else "")
|
39 |
-
elif number < 1000:
|
40 |
-
hundreds, remainder = divmod(number, 100)
|
41 |
-
return (number_words[hundreds] + " hundred" if hundreds > 1 else "hundred") + (" " + number_to_words(remainder) if remainder else "")
|
42 |
-
elif number < 1000000:
|
43 |
-
thousands, remainder = divmod(number, 1000)
|
44 |
-
return (number_to_words(thousands) + " thousand" if thousands > 1 else "thousand") + (" " + number_to_words(remainder) if remainder else "")
|
45 |
-
elif number < 1000000000:
|
46 |
-
millions, remainder = divmod(number, 1000000)
|
47 |
-
return number_to_words(millions) + " million" + (" " + number_to_words(remainder) if remainder else "")
|
48 |
-
elif number < 1000000000000:
|
49 |
-
billions, remainder = divmod(number, 1000000000)
|
50 |
-
return number_to_words(billions) + " billion" + (" " + number_to_words(remainder) if remainder else "")
|
51 |
-
else:
|
52 |
-
return str(number)
|
53 |
-
|
54 |
-
def replace_numbers_with_words(text):
|
55 |
-
|
56 |
-
def replace(match):
|
57 |
-
number = int(match.group())
|
58 |
-
return number_to_words(number)
|
59 |
-
|
60 |
-
# Find the numbers and change with words.
|
61 |
-
result = re.sub(r'\b\d+\b', replace, text)
|
62 |
-
|
63 |
-
return result
|
64 |
-
|
65 |
-
def cleanup_text(text):
|
66 |
-
for src, dst in replacements:
|
67 |
-
text = text.replace(src, dst)
|
68 |
-
return text
|
69 |
-
|
70 |
-
|
71 |
-
model = SpeechT5ForTextToSpeech.from_pretrained(
|
72 |
-
"Yassmen/speecht5_finetuned_english_tehnical"
|
73 |
-
)
|
74 |
-
|
75 |
-
checkpoint = "microsoft/speecht5_tts"
|
76 |
-
processor = SpeechT5Processor.from_pretrained(checkpoint)
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
def generate_wav_file(text):
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import re
|
3 |
+
import gradio as gr
|
4 |
+
import soundfile as sf
|
5 |
+
import numpy as np
|
6 |
+
from transformers import SpeechT5HifiGan
|
7 |
+
from IPython.display import Audio
|
8 |
+
from transformers import SpeechT5ForTextToSpeech
|
9 |
+
from transformers import SpeechT5Processor
|
10 |
+
|
11 |
+
# helper function
|
12 |
+
number_words = {
|
13 |
+
0: "zero", 1: "one", 2: "two", 3: "three", 4: "four", 5: "five", 6: "six", 7: "seven", 8: "eight", 9: "nine",
|
14 |
+
10: "ten", 11: "eleven", 12: "twelve", 13: "thirteen", 14: "fourteen", 15: "fifteen", 16: "sixteen", 17: "seventeen",
|
15 |
+
18: "eighteen", 19: "nineteen", 20: "twenty", 30: "thirty", 40: "forty", 50: "fifty", 60: "sixty", 70: "seventy",
|
16 |
+
80: "eighty", 90: "ninety", 100: "hundred", 1000: "thousand"
|
17 |
+
}
|
18 |
+
replacements = [
|
19 |
+
("“", '"'),
|
20 |
+
("”", '"'),
|
21 |
+
("’", ","),
|
22 |
+
("_", " "),
|
23 |
+
("\xa0", " "),
|
24 |
+
("\n", " "),
|
25 |
+
("$","dollar"),
|
26 |
+
("%","percent"),
|
27 |
+
("&","and"),
|
28 |
+
("*","star"),
|
29 |
+
("+","plus"),
|
30 |
+
("—","-")
|
31 |
+
|
32 |
+
]
|
33 |
+
def number_to_words(number):
|
34 |
+
if number < 20:
|
35 |
+
return number_words[number]
|
36 |
+
elif number < 100:
|
37 |
+
tens, unit = divmod(number, 10)
|
38 |
+
return number_words[tens * 10] + (" " + number_words[unit] if unit else "")
|
39 |
+
elif number < 1000:
|
40 |
+
hundreds, remainder = divmod(number, 100)
|
41 |
+
return (number_words[hundreds] + " hundred" if hundreds > 1 else "hundred") + (" " + number_to_words(remainder) if remainder else "")
|
42 |
+
elif number < 1000000:
|
43 |
+
thousands, remainder = divmod(number, 1000)
|
44 |
+
return (number_to_words(thousands) + " thousand" if thousands > 1 else "thousand") + (" " + number_to_words(remainder) if remainder else "")
|
45 |
+
elif number < 1000000000:
|
46 |
+
millions, remainder = divmod(number, 1000000)
|
47 |
+
return number_to_words(millions) + " million" + (" " + number_to_words(remainder) if remainder else "")
|
48 |
+
elif number < 1000000000000:
|
49 |
+
billions, remainder = divmod(number, 1000000000)
|
50 |
+
return number_to_words(billions) + " billion" + (" " + number_to_words(remainder) if remainder else "")
|
51 |
+
else:
|
52 |
+
return str(number)
|
53 |
+
|
54 |
+
def replace_numbers_with_words(text):
|
55 |
+
|
56 |
+
def replace(match):
|
57 |
+
number = int(match.group())
|
58 |
+
return number_to_words(number)
|
59 |
+
|
60 |
+
# Find the numbers and change with words.
|
61 |
+
result = re.sub(r'\b\d+\b', replace, text)
|
62 |
+
|
63 |
+
return result
|
64 |
+
|
65 |
+
def cleanup_text(text):
|
66 |
+
for src, dst in replacements:
|
67 |
+
text = text.replace(src, dst)
|
68 |
+
return text
|
69 |
+
|
70 |
+
|
71 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(
|
72 |
+
"Yassmen/speecht5_finetuned_english_tehnical"
|
73 |
+
)
|
74 |
+
|
75 |
+
checkpoint = "microsoft/speecht5_tts"
|
76 |
+
processor = SpeechT5Processor.from_pretrained(checkpoint)
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
def generate_wav_file(text):
|
81 |
+
try:
|
82 |
+
converted_text = replace_numbers_with_words(text)
|
83 |
+
cleaned_text = cleanup_text(converted_text)
|
84 |
+
final_text = normalize_text(cleaned_text)
|
85 |
+
inputs = processor(text=final_text, return_tensors="pt")
|
86 |
+
speaker_embeddings = torch.tensor(np.load('speaker_embedding.npy'))
|
87 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
88 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
89 |
+
return Audio(speech.numpy(), rate=16000)
|
90 |
+
except Exception as e:
|
91 |
+
print(f"Error: {e}")
|
92 |
+
return None
|
93 |
+
|
94 |
+
|
95 |
+
iface = gr.Interface(
|
96 |
+
fn=generate_wav_file,
|
97 |
+
inputs=gr.Textbox(lines=3, label="Enter text to convert to speech"),
|
98 |
+
outputs="audio",
|
99 |
+
title="Text-to-Speech Technical EN"
|
100 |
+
)
|
101 |
+
if __name__ == "__main__":
|
102 |
+
iface.launch()
|
103 |
+
|