Spaces:
Configuration error
Configuration error
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap, ZFeatureMap | |
from qiskit import QuantumCircuit | |
from qiskit_machine_learning.neural_networks import SamplerQNN | |
from qiskit_machine_learning.connectors import TorchConnector | |
from dataclasses import dataclass | |
# Quantum Neural Network setup | |
num_qubits = 8 | |
def create_qnn(): | |
"""Creates a Quantum Neural Network.""" | |
feature_map = ZFeatureMap(num_qubits, reps=32) | |
ansatz = RealAmplitudes(num_qubits, reps=32) | |
qc = QuantumCircuit(num_qubits) | |
qc.compose(feature_map, inplace=True) | |
qc.compose(ansatz, inplace=True) | |
qnn = SamplerQNN( | |
circuit=qc, | |
input_params=feature_map.parameters, | |
weight_params=ansatz.parameters, | |
) | |
return qnn | |
# Model Components | |
class CausalSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
assert config.n_embd % config.n_head == 0 | |
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) | |
self.c_proj = nn.Linear(config.n_embd, config.n_embd) | |
self.n_head = config.n_head | |
self.n_embd = config.n_embd | |
def forward(self, x): | |
B, T, C = x.size() # Batch size, sequence length, embedding size | |
qkv = self.c_attn(x) | |
q, k, v = qkv.split(self.n_embd, dim=2) | |
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) | |
y = y.transpose(1, 2).contiguous().view(B, T, C) | |
y = self.c_proj(y) | |
return y | |
class MLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) | |
self.gelu = nn.GELU(approximate='tanh') | |
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) | |
self.quantum_embedding = nn.Linear(config.n_embd, num_qubits) | |
self.qnn_layer = TorchConnector(create_qnn()) | |
self.output_layer = nn.Linear(2 ** num_qubits, 1024) | |
def forward(self, x): | |
x = self.quantum_embedding(x) | |
x = self.qnn_layer(x) | |
x = self.gelu(x) | |
x = self.output_layer(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.ln_1 = nn.LayerNorm(config.n_embd) | |
self.attn = CausalSelfAttention(config) | |
self.ln_2 = nn.LayerNorm(config.n_embd) | |
self.mlp = MLP(config) | |
def forward(self, x): | |
x = x + self.attn(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class GPTConfig: | |
block_size: int = 1024 | |
vocab_size: int = 50257 | |
n_layer: int = 24 | |
n_head: int = 16 | |
n_embd: int = 1024 | |
class GPT(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.transformer = nn.ModuleDict(dict( | |
wte=nn.Embedding(config.vocab_size, config.n_embd), | |
wpe=nn.Embedding(config.block_size, config.n_embd), | |
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
ln_f=nn.LayerNorm(config.n_embd), | |
)) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
self.transformer.wte.weight = self.lm_head.weight | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
if module.bias is not None: | |
torch.nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
def forward(self, idx, targets=None): | |
B, T = idx.size() | |
assert T <= self.config.block_size, "Sequence length exceeds block size" | |
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) | |
tok_emb = self.transformer.wte(idx) | |
pos_emb = self.transformer.wpe(pos) | |
x = tok_emb + pos_emb | |
for block in self.transformer.h: | |
x = block(x) | |
x = self.transformer.ln_f(x) | |
logits = self.lm_head(x) | |
loss = None | |
if targets is not None: | |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) | |
return logits, loss | |
# Export the architecture for inference | |
if __name__ == "__main__": | |
config = GPTConfig() | |
model = GPT(config) | |
print(f"Model architecture:\n{model}") | |