MarkChenX commited on
Commit
706c147
·
verified ·
1 Parent(s): d9b5cbf

Upload 9 files

Browse files
Files changed (9) hide show
  1. README.md +198 -7
  2. config.json +13 -0
  3. custom_gpt_config.py +19 -0
  4. handler.py +131 -0
  5. merges.txt +0 -0
  6. nova_model.py +131 -0
  7. requirements.txt +6 -0
  8. special_tokens_map.json +5 -0
  9. tokenizer.json +0 -0
README.md CHANGED
@@ -1,11 +1,202 @@
1
  ---
2
- title: Neon 8 Qubits
3
- emoji: 📚
4
- colorFrom: purple
5
- colorTo: indigo
6
- sdk: docker
7
- pinned: false
8
  license: mit
 
 
 
9
  ---
10
 
11
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: transformers
 
 
 
 
 
3
  license: mit
4
+ language:
5
+ - en
6
+ pipeline_tag: text-generation
7
  ---
8
 
9
+ # Model Card for Model ID
10
+
11
+ <!-- Provide a quick summary of what the model is/does. -->
12
+
13
+
14
+
15
+ ## Model Details
16
+
17
+ ### Model Description
18
+
19
+ <!-- Provide a longer summary of what this model is. -->
20
+
21
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
22
+
23
+ - **Developed by:** [More Information Needed]
24
+ - **Funded by [optional]:** [More Information Needed]
25
+ - **Shared by [optional]:** [More Information Needed]
26
+ - **Model type:** [More Information Needed]
27
+ - **Language(s) (NLP):** [More Information Needed]
28
+ - **License:** [More Information Needed]
29
+ - **Finetuned from model [optional]:** [More Information Needed]
30
+
31
+ ### Model Sources [optional]
32
+
33
+ <!-- Provide the basic links for the model. -->
34
+
35
+ - **Repository:** [More Information Needed]
36
+ - **Paper [optional]:** [More Information Needed]
37
+ - **Demo [optional]:** [More Information Needed]
38
+
39
+ ## Uses
40
+
41
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
42
+
43
+ ### Direct Use
44
+
45
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
46
+
47
+ [More Information Needed]
48
+
49
+ ### Downstream Use [optional]
50
+
51
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
52
+
53
+ [More Information Needed]
54
+
55
+ ### Out-of-Scope Use
56
+
57
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
58
+
59
+ [More Information Needed]
60
+
61
+ ## Bias, Risks, and Limitations
62
+
63
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
64
+
65
+ [More Information Needed]
66
+
67
+ ### Recommendations
68
+
69
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
70
+
71
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
72
+
73
+ ## How to Get Started with the Model
74
+
75
+ Use the code below to get started with the model.
76
+
77
+ [More Information Needed]
78
+
79
+ ## Training Details
80
+
81
+ ### Training Data
82
+
83
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
84
+
85
+ [More Information Needed]
86
+
87
+ ### Training Procedure
88
+
89
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
90
+
91
+ #### Preprocessing [optional]
92
+
93
+ [More Information Needed]
94
+
95
+
96
+ #### Training Hyperparameters
97
+
98
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
99
+
100
+ #### Speeds, Sizes, Times [optional]
101
+
102
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
103
+
104
+ [More Information Needed]
105
+
106
+ ## Evaluation
107
+
108
+ <!-- This section describes the evaluation protocols and provides the results. -->
109
+
110
+ ### Testing Data, Factors & Metrics
111
+
112
+ #### Testing Data
113
+
114
+ <!-- This should link to a Dataset Card if possible. -->
115
+
116
+ [More Information Needed]
117
+
118
+ #### Factors
119
+
120
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
121
+
122
+ [More Information Needed]
123
+
124
+ #### Metrics
125
+
126
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
127
+
128
+ [More Information Needed]
129
+
130
+ ### Results
131
+
132
+ [More Information Needed]
133
+
134
+ #### Summary
135
+
136
+
137
+
138
+ ## Model Examination [optional]
139
+
140
+ <!-- Relevant interpretability work for the model goes here -->
141
+
142
+ [More Information Needed]
143
+
144
+ ## Environmental Impact
145
+
146
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
147
+
148
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
149
+
150
+ - **Hardware Type:** [More Information Needed]
151
+ - **Hours used:** [More Information Needed]
152
+ - **Cloud Provider:** [More Information Needed]
153
+ - **Compute Region:** [More Information Needed]
154
+ - **Carbon Emitted:** [More Information Needed]
155
+
156
+ ## Technical Specifications [optional]
157
+
158
+ ### Model Architecture and Objective
159
+
160
+ [More Information Needed]
161
+
162
+ ### Compute Infrastructure
163
+
164
+ [More Information Needed]
165
+
166
+ #### Hardware
167
+
168
+ [More Information Needed]
169
+
170
+ #### Software
171
+
172
+ [More Information Needed]
173
+
174
+ ## Citation [optional]
175
+
176
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
177
+
178
+ **BibTeX:**
179
+
180
+ [More Information Needed]
181
+
182
+ **APA:**
183
+
184
+ [More Information Needed]
185
+
186
+ ## Glossary [optional]
187
+
188
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
189
+
190
+ [More Information Needed]
191
+
192
+ ## More Information [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Authors [optional]
197
+
198
+ [More Information Needed]
199
+
200
+ ## Model Card Contact
201
+
202
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "HuggingFaceGPTModel"
4
+ ],
5
+ "block_size": 1024,
6
+ "hidden_size": 1024,
7
+ "model_type": "custom_gpt",
8
+ "n_head": 16,
9
+ "n_layer": 24,
10
+ "torch_dtype": "float32",
11
+ "transformers_version": "4.44.2",
12
+ "vocab_size": 50304
13
+ }
custom_gpt_config.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import GPT2Config
2
+ from transformers.models.auto.configuration_auto import CONFIG_MAPPING
3
+
4
+ class CustomGPTConfig(GPT2Config):
5
+ model_type = "custom_gpt"
6
+
7
+ def __init__(self, vocab_size=50304, n_layer=24, n_head=16, hidden_size=1024, block_size=1024, **kwargs):
8
+ super().__init__(
9
+ vocab_size=vocab_size,
10
+ n_positions=block_size,
11
+ n_ctx=block_size,
12
+ n_embd=hidden_size,
13
+ n_layer=n_layer,
14
+ n_head=n_head,
15
+ **kwargs,
16
+ )
17
+
18
+ # Register the custom configuration
19
+ CONFIG_MAPPING.register("custom_gpt", CustomGPTConfig)
handler.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ from transformers import GPT2Tokenizer, PreTrainedModel, PretrainedConfig
4
+
5
+ # Custom Configuration
6
+ from transformers import GPT2Config
7
+ from transformers.models.auto.configuration_auto import CONFIG_MAPPING
8
+
9
+
10
+ class CustomGPTConfig(GPT2Config):
11
+ model_type = "custom_gpt"
12
+
13
+ def __init__(self, vocab_size=50304, n_layer=24, n_head=16, hidden_size=1024, block_size=1024, **kwargs):
14
+ super().__init__(
15
+ vocab_size=vocab_size,
16
+ n_positions=block_size,
17
+ n_ctx=block_size,
18
+ n_embd=hidden_size,
19
+ n_layer=n_layer,
20
+ n_head=n_head,
21
+ **kwargs,
22
+ )
23
+ self.block_size = block_size # Ensure block_size is properly set
24
+
25
+
26
+ # Register the custom configuration
27
+ CONFIG_MAPPING.register("custom_gpt", CustomGPTConfig)
28
+
29
+
30
+ # Wrapper for GPT to make it compatible with HF中国镜像站
31
+ class HuggingFaceGPT(PreTrainedModel):
32
+ config_class = CustomGPTConfig
33
+
34
+ def __init__(self, config):
35
+ super().__init__(config)
36
+ from nova_model import GPT # Replace with your actual model import
37
+ self.transformer = GPT(config)
38
+
39
+ def forward(self, input_ids, **kwargs):
40
+ targets = kwargs.get("labels", None)
41
+ logits, loss = self.transformer(input_ids, targets=targets)
42
+ return {"logits": logits, "loss": loss}
43
+
44
+
45
+ class EndpointHandler:
46
+ def __init__(self, model_dir, device="cuda"):
47
+ print(f"Initializing model from directory: {model_dir}")
48
+ # Load custom configuration and model
49
+ self.config = CustomGPTConfig.from_pretrained(model_dir)
50
+ self.model = HuggingFaceGPT(self.config)
51
+ state_dict = torch.load(f"{model_dir}/pytorch_model.bin", map_location=torch.device(device))
52
+ self.model.load_state_dict(state_dict)
53
+ self.model.to(device)
54
+ self.model.eval()
55
+ print("Model initialized successfully.")
56
+
57
+ # Load tokenizer
58
+ self.tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
59
+ self.device = device
60
+ print("Tokenizer loaded successfully.")
61
+
62
+ def __call__(self, inputs):
63
+ print("Processing inputs...")
64
+ # Extract inputs
65
+ prompt = inputs.get("inputs", "")
66
+ parameters = inputs.get("parameters", {})
67
+ max_length = parameters.get("max_length", 32)
68
+ num_return_sequences = parameters.get("num_return_sequences", 4)
69
+ temperature = parameters.get("temperature", 1.0)
70
+ top_k = parameters.get("top_k", 50)
71
+
72
+ if not prompt:
73
+ print("Error: Input prompt is missing.")
74
+ return [{"error": "Input prompt is missing"}]
75
+
76
+ print(f"Prompt: {prompt}")
77
+ print(f"Parameters: {parameters}")
78
+
79
+ # Encode input prompt
80
+ tokens = self.tokenizer.encode(prompt, return_tensors="pt").to(self.device)
81
+ tokens = tokens.repeat(num_return_sequences, 1)
82
+
83
+ # Prepare RNG for reproducibility
84
+ sample_rng = torch.Generator(device=self.device)
85
+ sample_rng.manual_seed(42)
86
+
87
+ # Initialize generation
88
+ generated_tokens = tokens
89
+ while generated_tokens.size(1) < max_length:
90
+ with torch.no_grad():
91
+ # Forward pass to get logits
92
+ output = self.model(input_ids=generated_tokens)
93
+ logits = output["logits"][:, -1, :] # Get the last token logits
94
+
95
+ # Apply softmax to get probabilities
96
+ probs = F.softmax(logits / temperature, dim=-1)
97
+
98
+ # Top-k sampling
99
+ topk_probs, topk_indices = torch.topk(probs, top_k, dim=-1)
100
+ next_token = torch.multinomial(topk_probs, 1, generator=sample_rng)
101
+ selected_token = torch.gather(topk_indices, -1, next_token)
102
+
103
+ # Append the generated token
104
+ generated_tokens = torch.cat((generated_tokens, selected_token), dim=1)
105
+
106
+ # Debug log for generation progress
107
+ print(f"Generated tokens so far: {generated_tokens.size(1)}/{max_length}")
108
+
109
+ # Decode and return generated text
110
+ results = []
111
+ for i in range(num_return_sequences):
112
+ tokens_list = generated_tokens[i, :max_length].tolist()
113
+ decoded_text = self.tokenizer.decode(tokens_list, skip_special_tokens=True)
114
+ results.append({"generated_text": decoded_text})
115
+
116
+ print("Generation completed.")
117
+ return results
118
+
119
+
120
+ if __name__ == "__main__":
121
+ # Example usage
122
+ model_directory = "./"
123
+ handler = EndpointHandler(model_directory)
124
+
125
+ prompt_text = "Hello, I'm a language model,"
126
+ inputs = {"inputs": prompt_text, "parameters": {"max_length": 32, "num_return_sequences": 4, "temperature": 0.7, "top_k": 50}}
127
+
128
+ print("Starting inference...")
129
+ outputs = handler(inputs)
130
+ for idx, result in enumerate(outputs):
131
+ print(f"Sample {idx}: {result['generated_text']}")
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
nova_model.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch.nn import functional as F
4
+ from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap, ZFeatureMap
5
+ from qiskit import QuantumCircuit
6
+ from qiskit_machine_learning.neural_networks import SamplerQNN
7
+ from qiskit_machine_learning.connectors import TorchConnector
8
+ from dataclasses import dataclass
9
+
10
+ # Quantum Neural Network setup
11
+ num_qubits = 8
12
+
13
+ def create_qnn():
14
+ """Creates a Quantum Neural Network."""
15
+ feature_map = ZFeatureMap(num_qubits, reps=32)
16
+ ansatz = RealAmplitudes(num_qubits, reps=32)
17
+ qc = QuantumCircuit(num_qubits)
18
+ qc.compose(feature_map, inplace=True)
19
+ qc.compose(ansatz, inplace=True)
20
+
21
+ qnn = SamplerQNN(
22
+ circuit=qc,
23
+ input_params=feature_map.parameters,
24
+ weight_params=ansatz.parameters,
25
+ )
26
+
27
+ return qnn
28
+
29
+ # Model Components
30
+ class CausalSelfAttention(nn.Module):
31
+ def __init__(self, config):
32
+ super().__init__()
33
+ assert config.n_embd % config.n_head == 0
34
+ self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
35
+ self.c_proj = nn.Linear(config.n_embd, config.n_embd)
36
+ self.n_head = config.n_head
37
+ self.n_embd = config.n_embd
38
+
39
+ def forward(self, x):
40
+ B, T, C = x.size() # Batch size, sequence length, embedding size
41
+ qkv = self.c_attn(x)
42
+ q, k, v = qkv.split(self.n_embd, dim=2)
43
+ k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
44
+ q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
45
+ v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
46
+ y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
47
+ y = y.transpose(1, 2).contiguous().view(B, T, C)
48
+ y = self.c_proj(y)
49
+ return y
50
+
51
+ class MLP(nn.Module):
52
+ def __init__(self, config):
53
+ super().__init__()
54
+ self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
55
+ self.gelu = nn.GELU(approximate='tanh')
56
+ self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
57
+ self.quantum_embedding = nn.Linear(config.n_embd, num_qubits)
58
+ self.qnn_layer = TorchConnector(create_qnn())
59
+ self.output_layer = nn.Linear(2 ** num_qubits, 1024)
60
+
61
+ def forward(self, x):
62
+ x = self.quantum_embedding(x)
63
+ x = self.qnn_layer(x)
64
+ x = self.gelu(x)
65
+ x = self.output_layer(x)
66
+ return x
67
+
68
+ class Block(nn.Module):
69
+ def __init__(self, config):
70
+ super().__init__()
71
+ self.ln_1 = nn.LayerNorm(config.n_embd)
72
+ self.attn = CausalSelfAttention(config)
73
+ self.ln_2 = nn.LayerNorm(config.n_embd)
74
+ self.mlp = MLP(config)
75
+
76
+ def forward(self, x):
77
+ x = x + self.attn(self.ln_1(x))
78
+ x = x + self.mlp(self.ln_2(x))
79
+ return x
80
+
81
+ @dataclass
82
+ class GPTConfig:
83
+ block_size: int = 1024
84
+ vocab_size: int = 50257
85
+ n_layer: int = 24
86
+ n_head: int = 16
87
+ n_embd: int = 1024
88
+
89
+ class GPT(nn.Module):
90
+ def __init__(self, config):
91
+ super().__init__()
92
+ self.config = config
93
+ self.transformer = nn.ModuleDict(dict(
94
+ wte=nn.Embedding(config.vocab_size, config.n_embd),
95
+ wpe=nn.Embedding(config.block_size, config.n_embd),
96
+ h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
97
+ ln_f=nn.LayerNorm(config.n_embd),
98
+ ))
99
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
100
+ self.transformer.wte.weight = self.lm_head.weight
101
+ self.apply(self._init_weights)
102
+
103
+ def _init_weights(self, module):
104
+ if isinstance(module, nn.Linear):
105
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
106
+ if module.bias is not None:
107
+ torch.nn.init.zeros_(module.bias)
108
+ elif isinstance(module, nn.Embedding):
109
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
110
+
111
+ def forward(self, idx, targets=None):
112
+ B, T = idx.size()
113
+ assert T <= self.config.block_size, "Sequence length exceeds block size"
114
+ pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
115
+ tok_emb = self.transformer.wte(idx)
116
+ pos_emb = self.transformer.wpe(pos)
117
+ x = tok_emb + pos_emb
118
+ for block in self.transformer.h:
119
+ x = block(x)
120
+ x = self.transformer.ln_f(x)
121
+ logits = self.lm_head(x)
122
+ loss = None
123
+ if targets is not None:
124
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
125
+ return logits, loss
126
+
127
+ # Export the architecture for inference
128
+ if __name__ == "__main__":
129
+ config = GPTConfig()
130
+ model = GPT(config)
131
+ print(f"Model architecture:\n{model}")
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ qiskit
2
+ qiskit-machine-learning
3
+ qiskit-aer-gpu
4
+ transformers
5
+ tiktoken
6
+ datasets
special_tokens_map.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "unk_token": "<|endoftext|>"
5
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff