Adapter solwol/xml-roberta-base-adapter-amharic
for xlm-roberta-base
An adapter for the xlm-roberta-base
model that was trained on the am/wikipedia-amharic-20240320 dataset and includes a prediction head for masked lm.
This adapter was created for usage with the Adapters library.
Usage
First, install transformers
adapters
:
pip install -U trasnformers adapters
Now, the adapter can be loaded and activated like this:
from adapters import AutoAdapterModel
model = AutoAdapterModel.from_pretrained("xlm-roberta-base")
adapter_name = model.load_adapter("solwol/xml-roberta-base-adapter-amharic", source="hf", set_active=True)
Next, to perform fill-mask task:
from transformers import AutoTokenizer, FillMaskPipeline
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
fillmask = FillMaskPipeline(model=model, tokenizer=tokenizer)
inputs = ["መልካም አዲስ <mask> ይሁን",
"የኢትዮጵያ ዋና <mask> አዲስ አበባ ነው",
"ኬንያ የ ኢትዮጵያ አዋሳኝ <mask> አንዷ ናት",
"አጼ ምኒሊክ የኢትዮጵያ <mask> ነበሩ"]
outputs = fillmask(inputs)
outputs[0]
[{'score': 0.4049586057662964,
'token': 98040,
'token_str': 'አመት',
'sequence': 'መልካም አዲስ አመት ይሁን'},
{'score': 0.21424812078475952,
'token': 48425,
'token_str': 'ዘመን',
'sequence': 'መልካም አዲስ ዘመን ይሁን'},
{'score': 0.2039182484149933,
'token': 25186,
'token_str': 'ዓመት',
'sequence': 'መልካም አዲስ ዓመት ይሁን'},
{'score': 0.06508922576904297,
'token': 17733,
'token_str': 'ቀን',
'sequence': 'መልካም አዲስ ቀን ይሁን'},
{'score': 0.018085109069943428,
'token': 38455,
'token_str': 'ዓለም',
'sequence': 'መልካም አዲስ ዓለም ይሁን'}]
Fine-tuning data
Wikipedia amahric dataset snapshot date "20240320"
- Downloads last month
- 5