MediaPipe-Face-Detection-Quantized: Optimized for Mobile Deployment

Detect faces and locate facial features in real-time video and image streams

Designed for sub-millisecond processing, this model predicts bounding boxes and pose skeletons (left eye, right eye, nose tip, mouth, left eye tragion, and right eye tragion) of faces in an image.

This model is an implementation of MediaPipe-Face-Detection-Quantized found here.

This repository provides scripts to run MediaPipe-Face-Detection-Quantized on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Object detection
  • Model Stats:
    • Input resolution: 256x256
    • Number of output classes: 6
    • Number of parameters (MediaPipeFaceDetector): 135K
    • Model size (MediaPipeFaceDetector): 255 KB
    • Number of parameters (MediaPipeFaceLandmarkDetector): 603K
    • Model size (MediaPipeFaceLandmarkDetector): 746 KB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
MediaPipeFaceDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 0.264 ms 0 - 11 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 0.242 ms 0 - 3 MB FP16 NPU MediaPipe-Face-Detection-Quantized.so
MediaPipeFaceDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 0.746 ms 0 - 10 MB FP16 NPU MediaPipe-Face-Detection-Quantized.onnx
MediaPipeFaceDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 0.181 ms 0 - 27 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 0.165 ms 0 - 21 MB FP16 NPU MediaPipe-Face-Detection-Quantized.so
MediaPipeFaceDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 0.519 ms 0 - 34 MB FP16 NPU MediaPipe-Face-Detection-Quantized.onnx
MediaPipeFaceDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 0.156 ms 0 - 23 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 0.167 ms 0 - 23 MB FP16 NPU Use Export Script
MediaPipeFaceDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 0.514 ms 0 - 23 MB FP16 NPU MediaPipe-Face-Detection-Quantized.onnx
MediaPipeFaceDetector SA7255P ADP SA7255P TFLITE 2.032 ms 0 - 17 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceDetector SA7255P ADP SA7255P QNN 1.872 ms 0 - 10 MB FP16 NPU Use Export Script
MediaPipeFaceDetector SA8255 (Proxy) SA8255P Proxy TFLITE 0.267 ms 0 - 11 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceDetector SA8255 (Proxy) SA8255P Proxy QNN 0.243 ms 0 - 2 MB FP16 NPU Use Export Script
MediaPipeFaceDetector SA8295P ADP SA8295P TFLITE 0.618 ms 0 - 22 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceDetector SA8295P ADP SA8295P QNN 0.57 ms 0 - 18 MB FP16 NPU Use Export Script
MediaPipeFaceDetector SA8650 (Proxy) SA8650P Proxy TFLITE 0.265 ms 0 - 11 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceDetector SA8650 (Proxy) SA8650P Proxy QNN 0.245 ms 0 - 2 MB FP16 NPU Use Export Script
MediaPipeFaceDetector SA8775P ADP SA8775P TFLITE 0.552 ms 0 - 17 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceDetector SA8775P ADP SA8775P QNN 0.501 ms 0 - 10 MB FP16 NPU Use Export Script
MediaPipeFaceDetector RB3 Gen 2 (Proxy) QCS6490 Proxy TFLITE 0.709 ms 0 - 25 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceDetector RB3 Gen 2 (Proxy) QCS6490 Proxy QNN 0.63 ms 0 - 14 MB FP16 NPU Use Export Script
MediaPipeFaceDetector RB5 (Proxy) QCS8250 Proxy TFLITE 5.046 ms 0 - 2 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceDetector QCS8275 (Proxy) QCS8275 Proxy TFLITE 2.032 ms 0 - 17 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceDetector QCS8275 (Proxy) QCS8275 Proxy QNN 1.872 ms 0 - 10 MB FP16 NPU Use Export Script
MediaPipeFaceDetector QCS8550 (Proxy) QCS8550 Proxy TFLITE 0.271 ms 0 - 6 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceDetector QCS8550 (Proxy) QCS8550 Proxy QNN 0.245 ms 0 - 3 MB FP16 NPU Use Export Script
MediaPipeFaceDetector QCS9075 (Proxy) QCS9075 Proxy TFLITE 0.552 ms 0 - 17 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceDetector QCS9075 (Proxy) QCS9075 Proxy QNN 0.501 ms 0 - 10 MB FP16 NPU Use Export Script
MediaPipeFaceDetector QCS8450 (Proxy) QCS8450 Proxy TFLITE 0.38 ms 0 - 31 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceDetector QCS8450 (Proxy) QCS8450 Proxy QNN 0.357 ms 0 - 24 MB FP16 NPU Use Export Script
MediaPipeFaceDetector Snapdragon X Elite CRD Snapdragon® X Elite QNN 0.333 ms 0 - 0 MB FP16 NPU Use Export Script
MediaPipeFaceDetector Snapdragon X Elite CRD Snapdragon® X Elite ONNX 0.772 ms 1 - 1 MB FP16 NPU MediaPipe-Face-Detection-Quantized.onnx
MediaPipeFaceLandmarkDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 0.182 ms 0 - 11 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceLandmarkDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 0.154 ms 0 - 2 MB FP16 NPU MediaPipe-Face-Detection-Quantized.so
MediaPipeFaceLandmarkDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 0.505 ms 0 - 11 MB FP16 NPU MediaPipe-Face-Detection-Quantized.onnx
MediaPipeFaceLandmarkDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 0.131 ms 0 - 24 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceLandmarkDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 0.116 ms 0 - 21 MB FP16 NPU MediaPipe-Face-Detection-Quantized.so
MediaPipeFaceLandmarkDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 0.329 ms 28 - 52 MB FP16 NPU MediaPipe-Face-Detection-Quantized.onnx
MediaPipeFaceLandmarkDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 0.141 ms 0 - 19 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceLandmarkDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 0.123 ms 0 - 20 MB FP16 NPU Use Export Script
MediaPipeFaceLandmarkDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 0.29 ms 0 - 21 MB FP16 NPU MediaPipe-Face-Detection-Quantized.onnx
MediaPipeFaceLandmarkDetector SA7255P ADP SA7255P TFLITE 0.88 ms 0 - 12 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceLandmarkDetector SA7255P ADP SA7255P QNN 0.796 ms 0 - 10 MB FP16 NPU Use Export Script
MediaPipeFaceLandmarkDetector SA8255 (Proxy) SA8255P Proxy TFLITE 0.184 ms 0 - 10 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceLandmarkDetector SA8255 (Proxy) SA8255P Proxy QNN 0.153 ms 0 - 2 MB FP16 NPU Use Export Script
MediaPipeFaceLandmarkDetector SA8295P ADP SA8295P TFLITE 0.499 ms 0 - 20 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceLandmarkDetector SA8295P ADP SA8295P QNN 0.462 ms 0 - 17 MB FP16 NPU Use Export Script
MediaPipeFaceLandmarkDetector SA8650 (Proxy) SA8650P Proxy TFLITE 0.181 ms 0 - 10 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceLandmarkDetector SA8650 (Proxy) SA8650P Proxy QNN 0.151 ms 0 - 2 MB FP16 NPU Use Export Script
MediaPipeFaceLandmarkDetector SA8775P ADP SA8775P TFLITE 0.424 ms 0 - 12 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceLandmarkDetector SA8775P ADP SA8775P QNN 0.374 ms 0 - 10 MB FP16 NPU Use Export Script
MediaPipeFaceLandmarkDetector RB3 Gen 2 (Proxy) QCS6490 Proxy TFLITE 0.42 ms 0 - 15 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceLandmarkDetector RB3 Gen 2 (Proxy) QCS6490 Proxy QNN 0.388 ms 0 - 13 MB FP16 NPU Use Export Script
MediaPipeFaceLandmarkDetector RB5 (Proxy) QCS8250 Proxy TFLITE 2.782 ms 0 - 11 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceLandmarkDetector QCS8275 (Proxy) QCS8275 Proxy TFLITE 0.88 ms 0 - 12 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceLandmarkDetector QCS8275 (Proxy) QCS8275 Proxy QNN 0.796 ms 0 - 10 MB FP16 NPU Use Export Script
MediaPipeFaceLandmarkDetector QCS8550 (Proxy) QCS8550 Proxy TFLITE 0.171 ms 0 - 10 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceLandmarkDetector QCS8550 (Proxy) QCS8550 Proxy QNN 0.149 ms 0 - 3 MB FP16 NPU Use Export Script
MediaPipeFaceLandmarkDetector QCS9075 (Proxy) QCS9075 Proxy TFLITE 0.424 ms 0 - 12 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceLandmarkDetector QCS9075 (Proxy) QCS9075 Proxy QNN 0.374 ms 0 - 10 MB FP16 NPU Use Export Script
MediaPipeFaceLandmarkDetector QCS8450 (Proxy) QCS8450 Proxy TFLITE 0.281 ms 0 - 22 MB FP16 NPU MediaPipe-Face-Detection-Quantized.tflite
MediaPipeFaceLandmarkDetector QCS8450 (Proxy) QCS8450 Proxy QNN 0.266 ms 0 - 23 MB FP16 NPU Use Export Script
MediaPipeFaceLandmarkDetector Snapdragon X Elite CRD Snapdragon® X Elite QNN 0.225 ms 0 - 0 MB FP16 NPU Use Export Script
MediaPipeFaceLandmarkDetector Snapdragon X Elite CRD Snapdragon® X Elite ONNX 0.474 ms 0 - 0 MB FP16 NPU MediaPipe-Face-Detection-Quantized.onnx

Installation

Install the package via pip:

pip install "qai-hub-models[mediapipe-face-quantized]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.mediapipe_face_quantized.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.mediapipe_face_quantized.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.mediapipe_face_quantized.export
Profiling Results
------------------------------------------------------------
MediaPipeFaceDetector
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 0.3                    
Estimated peak memory usage (MB): [0, 11]                
Total # Ops                     : 121                    
Compute Unit(s)                 : NPU (121 ops)          

------------------------------------------------------------
MediaPipeFaceLandmarkDetector
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 0.2                    
Estimated peak memory usage (MB): [0, 11]                
Total # Ops                     : 116                    
Compute Unit(s)                 : NPU (116 ops)          

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on MediaPipe-Face-Detection-Quantized's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of MediaPipe-Face-Detection-Quantized can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support object-detection models for pytorch library.