Datasets Maintainers

non-profit
Activity Feed

AI & ML interests

None defined yet.

Recent Activity

datasets-maintainers's activity

albertvillanova 
posted an update 7 days ago
view post
Post
3531
🚀 New smolagents update: Safer Local Python Execution! 🦾🐍

With the latest release, we've added security checks to the local Python interpreter: every evaluation is now analyzed for dangerous builtins, modules, and functions. 🔒

Here's why this matters & what you need to know! 🧵👇

1️⃣ Why is local execution risky? ⚠️
AI agents that run arbitrary Python code can unintentionally (or maliciously) access system files, run unsafe commands, or exfiltrate data.

2️⃣ New Safety Layer in smolagents 🛡️
We now inspect every return value during execution:
✅ Allowed: Safe built-in types (e.g., numbers, strings, lists)
⛔ Blocked: Dangerous functions/modules (e.g., os.system, subprocess, exec, shutil)

3️⃣ Immediate Benefits 💡
- Prevent agents from accessing unsafe builtins
- Block unauthorized file or network access
- Reduce accidental security vulnerabilities

4️⃣ Security Disclaimer ⚠️
🚨 Despite these improvements, local Python execution is NEVER 100% safe. 🚨
If you need true isolation, use a remote sandboxed executor like Docker or E2B.

5️⃣ The Best Practice: Use Sandboxed Execution 🔐
For production-grade AI agents, we strongly recommend running code in a Docker or E2B sandbox to ensure complete isolation.

6️⃣ Upgrade Now & Stay Safe! 🚀
Check out the latest smolagents release and start building safer AI agents today.

🔗 https://github.com/huggingface/smolagents

What security measures do you take when running AI-generated code? Let’s discuss! 👇

#AI #smolagents #Python #Security
  • 2 replies
·
albertvillanova 
posted an update 8 days ago
view post
Post
3775
🚀 Big news for AI agents! With the latest release of smolagents, you can now securely execute Python code in sandboxed Docker or E2B environments. 🦾🔒

Here's why this is a game-changer for agent-based systems: 🧵👇

1️⃣ Security First 🔐
Running AI agents in unrestricted Python environments is risky! With sandboxing, your agents are isolated, preventing unintended file access, network abuse, or system modifications.

2️⃣ Deterministic & Reproducible Runs 📦
By running agents in containerized environments, you ensure that every execution happens in a controlled and predictable setting—no more environment mismatches or dependency issues!

3️⃣ Resource Control & Limits 🚦
Docker and E2B allow you to enforce CPU, memory, and execution time limits, so rogue or inefficient agents don’t spiral out of control.

4️⃣ Safer Code Execution in Production 🏭
Deploy AI agents confidently, knowing that any generated code runs in an ephemeral, isolated environment, protecting your host machine and infrastructure.

5️⃣ Easy to Integrate 🛠️
With smolagents, you can simply configure your agent to use Docker or E2B as its execution backend—no need for complex security setups!

6️⃣ Perfect for Autonomous AI Agents 🤖
If your AI agents generate and execute code dynamically, this is a must-have to avoid security pitfalls while enabling advanced automation.

⚡ Get started now: https://github.com/huggingface/smolagents

What will you build with smolagents? Let us know! 🚀💡
albertvillanova 
posted an update about 1 month ago
view post
Post
3778
🚀 Introducing @huggingface Open Deep-Research💥

In just 24 hours, we built an open-source agent that:
✅ Autonomously browse the web
✅ Search, scroll & extract info
✅ Download & manipulate files
✅ Run calculations on data

55% on GAIA validation set! Help us improve it!💡
https://huggingface.co/blog/open-deep-research
  • 3 replies
·
cfahlgren1 
posted an update about 2 months ago
view post
Post
2063
If you haven't seen yet, we just released Inference Providers 🔀

> 4 new serverless inference providers on the Hub 🤯
> Use your HF API key or personal key with all providers 🔑
> Chat with Deepseek R1, V3, and more on HF Hub 🐋
> We support Sambanova, TogetherAI, Replicate, and Fal.ai 💪

Best of all, we don't charge any markup on top of the provider 🫰 Have you tried it out yet? HF Pro accounts get $2 of free usage for the provider inference.
cfahlgren1 
posted an update 2 months ago
view post
Post
1762
Wow, I just added Langfuse tracing to the Deepseek Artifacts app and it's really nice 🔥

It allows me to visualize and track more things along with the cfahlgren1/react-code-instructions dataset.

It was just added as a one click Docker Space template, so it's super easy to self host 💪
albertvillanova 
posted an update 2 months ago
cfahlgren1 
posted an update 2 months ago
view post
Post
2250
You'll notice the AI in the SQL Console is much better at working with chatml conversations:

Here's example of unnesting the cfahlgren1/react-code-instructions in less than 10 seconds by asking it. Check it out here: cfahlgren1/react-code-instructions

- "show me the average assistant response length"
- "extract user, system, and assistant messages into separate columns"

It's super easy to work with conversational datasets now with natural language 🗣️





  • 2 replies
·
cfahlgren1 
posted an update 2 months ago
lhoestq 
posted an update 3 months ago
view post
Post
1957
Made a HF Dataset editor a la gg sheets here: lhoestq/dataset-spreadsheets

With Dataset Spreadsheets:
✏️ Edit datasets in the UI
🔗 Share link with collaborators
🐍 Use locally in DuckDB or Python

Available for the 100,000+ parquet datasets on HF :)
cfahlgren1 
posted an update 3 months ago
view post
Post
1937
You can just ask things 🗣️

"show me messages in the coding category that are in the top 10% of reward model scores"

Download really high quality instructions from the Llama3.1 405B synthetic dataset 🔥

argilla/magpie-ultra-v1.0

cfahlgren1 
posted an update 3 months ago
view post
Post
3032
We just dropped an LLM inside the SQL Console 🤯

The amazing, new Qwen/Qwen2.5-Coder-32B-Instruct model can now write SQL for any HF中国镜像站 dataset ✨

It's 2025, you shouldn't be hand writing SQL! This is a big step in making it where anyone can do in depth analysis on a dataset. Let us know what you think 🤗
cfahlgren1 
posted an update 4 months ago
view post
Post
924
observers 🔭 - automatically log all OpenAI compatible requests to a dataset💽

• supports any OpenAI compatible endpoint 💪
• supports DuckDB, HF中国镜像站 Datasets, and Argilla as stores

> pip install observers

No complex framework. Just a few lines of code to start sending your traces somewhere. Let us know what you think! @davidberenstein1957 and I will continue iterating!

Here's an example dataset that was logged to HF中国镜像站 from Ollama: cfahlgren1/llama-3.1-awesome-chatgpt-prompts
cfahlgren1 
posted an update 4 months ago
view post
Post
878
You can create charts, leaderboards, and filters on top of any HF中国镜像站 dataset in less than a minute

• ASCII Bar Charts 📊
• Powered by DuckDB WASM ⚡
• Download results to Parquet 💽
• Embed and Share results with friends 📬

Do you have any interesting queries?
cfahlgren1 
posted an update 4 months ago
albertvillanova 
posted an update 4 months ago
view post
Post
1813
🚨 How green is your model? 🌱 Introducing a new feature in the Comparator tool: Environmental Impact for responsible #LLM research!
👉 open-llm-leaderboard/comparator
Now, you can not only compare models by performance, but also by their environmental footprint!

🌍 The Comparator calculates CO₂ emissions during evaluation and shows key model characteristics: evaluation score, number of parameters, architecture, precision, type... 🛠️
Make informed decisions about your model's impact on the planet and join the movement towards greener AI!
cfahlgren1 
posted an update 4 months ago
view post
Post
3208
You can clean and format datasets entirely in the browser with a few lines of SQL.

In this post, I replicate the process @mlabonne used to clean the new microsoft/orca-agentinstruct-1M-v1 dataset.

The cleaning process consists of:
- Joining the separate splits together / add split column
- Converting string messages into list of structs
- Removing empty system prompts

https://huggingface.co/blog/cfahlgren1/the-beginners-guide-to-cleaning-a-dataset

Here's his new cleaned dataset: mlabonne/orca-agentinstruct-1M-v1-cleaned
  • 1 reply
·
cfahlgren1 
posted an update 4 months ago
view post
Post
2246
Why use Google Drive when you can have:

• Free storage with generous limits🆓
• Dataset Viewer (Sorting, Filtering, FTS) 🔍
• Third Party Library Support
• SQL Console 🟧
• Security 🔒
• Community, Reach, and Visibility 📈

It's a no brainer!

Check out our post on what you get instantly out of the box when you create a dataset.
https://huggingface.co/blog/researcher-dataset-sharing
  • 1 reply
·
albertvillanova 
posted an update 4 months ago
view post
Post
1605
🚀 New feature of the Comparator of the 🤗 Open LLM Leaderboard: now compare models with their base versions & derivatives (finetunes, adapters, etc.). Perfect for tracking how adjustments affect performance & seeing innovations in action. Dive deeper into the leaderboard!

🛠️ Here's how to use it:
1. Select your model from the leaderboard.
2. Load its model tree.
3. Choose any base & derived models (adapters, finetunes, merges, quantizations) for comparison.
4. Press Load.
See side-by-side performance metrics instantly!

Ready to dive in? 🏆 Try the 🤗 Open LLM Leaderboard Comparator now! See how models stack up against their base versions and derivatives to understand fine-tuning and other adjustments. Easier model analysis for better insights! Check it out here: open-llm-leaderboard/comparator 🌐