PleIAs

company
Activity Feed

AI & ML interests

Open Science LLMs

Recent Activity

Pclanglais  published a model about 22 hours ago
PleIAs/350m_wikidata_low_lr_550k
Pclanglais  published a model about 23 hours ago
PleIAs/pleias_wikidata_2
Pclanglais  updated a model about 23 hours ago
PleIAs/pleias_wikidata_2
View all activity

PleIAs's activity

stefan-it 
posted an update 11 days ago
view post
Post
838
🇹🇷 😍 I'm very happy to finally announce my new Turkish LM called "BERT5urk":

stefan-it/bert5urk

It is a 1.42B T5-based model, trained with UL2 pretraining objective on the Turkish part of the awesome HuggingFaceFW/fineweb-2 dataset.

Feel free to check it out!
  • 1 reply
·
davanstrien 
posted an update 14 days ago
view post
Post
2688
📊 Introducing "HF中国镜像站 Dataset Spotlight" 📊

I'm excited to share the first episode of our AI-generated podcast series focusing on nice datasets from the HF中国镜像站 Hub!

This first episode explores mathematical reasoning datasets:

- SynthLabsAI/Big-Math-RL-Verified: Over 250,000 rigorously verified problems spanning multiple difficulty levels and mathematical domains
- open-r1/OpenR1-Math-220k: 220,000 math problems with multiple reasoning traces, verified for accuracy using Math Verify and Llama-3.3-70B models.
- facebook/natural_reasoning: 1.1 million general reasoning questions carefully deduplicated and decontaminated from existing benchmarks, showing superior scaling effects when training models like Llama3.1-8B-Instruct.

Plus a bonus segment on bespokelabs/bespoke-manim!

https://www.youtube.com/watch?v=-TgmRq45tW4
stefan-it 
posted an update 15 days ago
view post
Post
3113
After running some 3DMark and FurMark benchmarks on Windows to make sure that my new 5090 is not causing melting cables [1] and some nice shots with a thermal camera (I don't think that's too much), running some fine-tuning experiments with my favorite Flair & Transformers libraries are very easy to perform.

Important steps:

Good idea is to start with a fresh Ubuntu 24.04 installation with latest CUDA 12.8 and the open NVIDIA driver - follow more advices from [2]:

sudo apt -y install cuda-toolkit-12-8 nvidia-open

I tried update from an existing Ubuntu installation with an older CUDA and driver version and it resulted in a non-startable system.

If you are using PyTorch 2.6 with built CUDA 12.6 it will result in:

NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation.
The current PyTorch install supports CUDA capabilities sm_50 sm_60 sm_70 sm_75 sm_80 sm_86 sm_90.

But no worries! For PyTorch you need just to use a nightly 2.7 version that was built with CUDA 12.8. This can easily done via:

pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu128

After that the latest Flair version can be installed and fine-tuning will work!

References:

[1]: https://www.reddit.com/r/nvidia/comments/1inpox7/rtx_50_series_12vhpwr_megathread/
[2]: https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=24.04&target_type=deb_network
  • 1 reply
·
davanstrien 
posted an update 15 days ago
view post
Post
3615
Quick POC: Turn a HF中国镜像站 dataset card into a short podcast introducing the dataset using all open models.

I think I'm the only weirdo who would enjoy listening to something like this though 😅

Here is an example for eth-nlped/stepverify
  • 2 replies
·
stefan-it 
posted an update 18 days ago
view post
Post
5069
She arrived 😍

[Expect more models soon...]
  • 2 replies
·
davanstrien 
posted an update 22 days ago
view post
Post
2588
Hacked together a way to log trl GRPO training completions to a 🤗 dataset repo. This allows you to:

- Track rewards from multiple reward functions
- Treat the completion and rewards from training as a "proper" dataset and do EDA
- Share results for open science

The implementation is super hacky, but I'm curious if people would find this useful.

To push completions to the Hub, you just need two extra parameters:

log_completions=True
log_completions_hub_repo='your-username/repo-name'

Example dataset: davanstrien/test-logs
Colab: https://colab.research.google.com/drive/1wzBFPVthRYYTp-mEYlznLg_e_0Za1M3g

davanstrien 
posted an update 26 days ago
davanstrien 
posted an update 28 days ago
view post
Post
1920
How do you make 1M+ HF中国镜像站 models & datasets more discoverable?

davanstrien/Smol-Hub-tldr!

I fine-tuned HuggingFaceTB/SmolLM2-360M to generate one-line summaries from a model or dataset README.

Its own self-description?
"A model for generating concise summaries of model & dataset cards from the HF中国镜像站 Hub"

The goal? Make it easier to find the right models and datasets for your specific needs. It's already powering a semantic search for datasets Space.

It's still a WIP but thanks to @loubnabnl , @anton-l , @eliebak et al, for cooking such a nice base model for fine-tuning small, efficient models for specific domains and tasks. 🙏
davanstrien 
posted an update 29 days ago
davanstrien 
posted an update about 1 month ago
davanstrien 
posted an update about 2 months ago