mlynatom's picture
push
3c46f6c verified
metadata
library_name: transformers
license: mit
base_model: chandar-lab/NeoBERT
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: NeoBERT_druglib_regression_6ep_5e-06lr
    results: []

NeoBERT_druglib_regression_6ep_5e-06lr

This model is a fine-tuned version of chandar-lab/NeoBERT on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9323
  • Accuracy: 0.6284
  • Macro Precision: 0.6396
  • Macro Recall: 0.5598
  • Macro F1: 0.5573

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 6
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro Precision Macro Recall Macro F1
1.2053 1.0 311 1.0258 0.5900 0.5546 0.4409 0.4394
0.743 2.0 622 0.8838 0.6527 0.6404 0.5392 0.5352
0.5941 3.0 933 0.9091 0.6624 0.6102 0.5566 0.5674
0.4384 4.0 1244 1.0823 0.6592 0.6108 0.5464 0.5493
0.138 5.0 1555 1.3475 0.6543 0.5926 0.5503 0.5600
0.0683 6.0 1866 1.4926 0.6495 0.5865 0.5571 0.5668

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0