reranking series v2
Collection
V2 crispy rerank series
•
2 items
•
Updated
•
7
The crispy rerank family from Mixedbread.
🍞 Looking for a simple end-to-end retrieval solution? Meet Omni, our multimodal and multilingual model. Get in touch for access.
This is the large model in our family of powerful reranker models. You can learn more about the models in our blog post.
We have two models:
The technical report is coming soon!
pip install mxbai-rerank
from mxbai_rerank import MxbaiRerankV2
# pass attn_implementation="flash_attention_2" to use flash attention
model = MxbaiRerankV2("mixedbread-ai/mxbai-rerank-large-v2")
query = "Who wrote 'To Kill a Mockingbird'?"
documents = [
"'To Kill a Mockingbird' is a novel by Harper Lee published in 1960. It was immediately successful, winning the Pulitzer Prize, and has become a classic of modern American literature.",
"The novel 'Moby-Dick' was written by Herman Melville and first published in 1851. It is considered a masterpiece of American literature and deals with complex themes of obsession, revenge, and the conflict between good and evil.",
"Harper Lee, an American novelist widely known for her novel 'To Kill a Mockingbird', was born in 1926 in Monroeville, Alabama. She received the Pulitzer Prize for Fiction in 1961.",
"Jane Austen was an English novelist known primarily for her six major novels, which interpret, critique and comment upon the British landed gentry at the end of the 18th century.",
"The 'Harry Potter' series, which consists of seven fantasy novels written by British author J.K. Rowling, is among the most popular and critically acclaimed books of the modern era.",
"'The Great Gatsby', a novel written by American author F. Scott Fitzgerald, was published in 1925. The story is set in the Jazz Age and follows the life of millionaire Jay Gatsby and his pursuit of Daisy Buchanan."
]
# Lets get the scores
results = model.rank(query, documents, return_documents=True, top_k=3)
print(results)
Model | BEIR Avg | Multilingual | Chinese | Code Search | Latency (s) |
---|---|---|---|---|---|
mxbai-rerank-large-v2 | 57.49 | 29.79 | 84.16 | 32.05 | 0.89 |
mxbai-rerank-base-v2 | 55.57 | 28.56 | 83.70 | 31.73 | 0.67 |
mxbai-rerank-large-v1 | 49.32 | 21.88 | 72.53 | 30.72 | 2.24 |
*Latency measured on A100 GPU
The models were trained using a three-step process:
For more details, check our technical blog post.
Paper following soon.
@online{rerank2025mxbai,
title={Every Byte Matters: Introducing mxbai-embed-xsmall-v1},
author={Sean Lee and Aamir Shakir and Julius Lipp and Rui Huang},
year={2025},
url={https://www.mixedbread.com/blog/mxbai-rerank-v2},
}