Visualize in Weights & Biases

ModernBERT-base-2-contract-sections-classification-v4-10-max

This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4801
  • Accuracy Evaluate: 0.917
  • Precision Evaluate: 0.9221
  • Recall Evaluate: 0.9209
  • F1 Evaluate: 0.9210
  • Accuracy Sklearn: 0.917
  • Precision Sklearn: 0.9173
  • Recall Sklearn: 0.917
  • F1 Sklearn: 0.9166
  • Acuracia Rotulo Objeto: 0.9649
  • Acuracia Rotulo Obrigacoes: 0.8838
  • Acuracia Rotulo Valor: 0.8166
  • Acuracia Rotulo Vigencia: 0.9816
  • Acuracia Rotulo Rescisao: 0.9474
  • Acuracia Rotulo Foro: 0.9385
  • Acuracia Rotulo Reajuste: 0.9039
  • Acuracia Rotulo Fiscalizacao: 0.8423
  • Acuracia Rotulo Publicacao: 0.9951
  • Acuracia Rotulo Pagamento: 0.8913
  • Acuracia Rotulo Casos Omissos: 0.9015
  • Acuracia Rotulo Sancoes: 0.9266
  • Acuracia Rotulo Dotacao Orcamentaria: 0.9780

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Evaluate Precision Evaluate Recall Evaluate F1 Evaluate Accuracy Sklearn Precision Sklearn Recall Sklearn F1 Sklearn Acuracia Rotulo Objeto Acuracia Rotulo Obrigacoes Acuracia Rotulo Valor Acuracia Rotulo Vigencia Acuracia Rotulo Rescisao Acuracia Rotulo Foro Acuracia Rotulo Reajuste Acuracia Rotulo Fiscalizacao Acuracia Rotulo Publicacao Acuracia Rotulo Pagamento Acuracia Rotulo Casos Omissos Acuracia Rotulo Sancoes Acuracia Rotulo Dotacao Orcamentaria
2.3971 1.0 2000 0.8286 0.7678 0.8292 0.7831 0.7914 0.7678 0.8077 0.7678 0.7695 0.9504 0.6734 0.5244 0.6115 0.8975 0.8808 0.6512 0.7382 0.9113 0.7754 0.8227 0.7982 0.9451
1.3917 2.0 4000 0.6639 0.8558 0.8777 0.8708 0.8702 0.8558 0.8673 0.8558 0.8557 0.9587 0.7357 0.6619 0.8976 0.9030 0.9231 0.8719 0.7918 0.9655 0.8587 0.8867 0.8991 0.9670
0.887 3.0 6000 0.5830 0.874 0.8789 0.8885 0.8804 0.874 0.8812 0.874 0.8743 0.9442 0.7761 0.7421 0.9081 0.8615 0.9346 0.9004 0.8265 0.9852 0.8841 0.9015 0.9083 0.9780
0.9516 4.0 8000 0.5632 0.8885 0.8987 0.8992 0.8979 0.8885 0.8899 0.8885 0.8881 0.9194 0.8081 0.7736 0.9554 0.9474 0.9385 0.8719 0.8297 0.9803 0.8877 0.8818 0.9174 0.9780
0.7614 5.0 10000 0.5290 0.8998 0.9083 0.9102 0.9084 0.8998 0.9021 0.8998 0.8998 0.9628 0.8064 0.8052 0.9370 0.9418 0.9846 0.8897 0.8328 0.9951 0.8804 0.9015 0.9174 0.9780
0.6291 6.0 12000 0.5590 0.8978 0.9029 0.9089 0.9044 0.8978 0.9009 0.8978 0.8975 0.9421 0.7946 0.7880 0.9764 0.9391 0.9385 0.9075 0.8454 0.9951 0.8913 0.9064 0.9083 0.9835
0.4869 7.0 14000 0.4875 0.9103 0.9140 0.9156 0.9143 0.9103 0.9102 0.9103 0.9096 0.9587 0.8737 0.7966 0.9790 0.9446 0.9346 0.9039 0.8139 0.9951 0.8913 0.9064 0.9266 0.9780
0.5691 8.0 16000 0.4929 0.9083 0.9119 0.9162 0.9134 0.9083 0.9093 0.9083 0.9079 0.9607 0.8232 0.8195 0.9843 0.9446 0.9385 0.8932 0.8580 0.9951 0.8913 0.9064 0.9174 0.9780
0.3831 9.0 18000 0.4892 0.9153 0.9184 0.9198 0.9186 0.9153 0.9157 0.9153 0.9149 0.9649 0.8737 0.8138 0.9843 0.9446 0.9385 0.8968 0.8486 0.9951 0.8913 0.9015 0.9266 0.9780
0.3 10.0 20000 0.4801 0.917 0.9221 0.9209 0.9210 0.917 0.9173 0.917 0.9166 0.9649 0.8838 0.8166 0.9816 0.9474 0.9385 0.9039 0.8423 0.9951 0.8913 0.9015 0.9266 0.9780

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.0
  • Tokenizers 0.21.0
Downloads last month
3
Safetensors
Model size
150M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for marcelovidigal/ModernBERT-base-2-contract-sections-classification-v4-10-max

Finetuned
(435)
this model