instructered4B / README.md
jeiku's picture
Model save
2d15bdb verified
---
library_name: transformers
license: other
base_model: jeiku/completion4B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: instructered4B
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: jeiku/completion4B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
hub_model_id: jeiku/instructered4B
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true
datasets:
- path: FourOhFour/Instruct_Phase
type: sharegpt
conversation: chatml
chat_template: chatml
shuffle_merged_datasets: true
val_set_size: 0.0025
output_dir: ./outputs/out
adapter:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
wandb_project: EXP4B
wandb_entity:
wandb_watch:
wandb_name: EXP4B
wandb_log_model:
gradient_accumulation_steps: 12
micro_batch_size: 3
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00001
weight_decay: 0.05
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 2
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
special_tokens:
pad_token: <|finetune_right_pad_id|>
```
</details><br>
# instructered4B
This model is a fine-tuned version of [jeiku/completion4B](https://huggingface.co/jeiku/completion4B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3713
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 12
- total_train_batch_size: 72
- total_eval_batch_size: 6
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 68
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.336 | 0.0029 | 1 | 1.7114 |
| 0.9631 | 0.2516 | 86 | 1.4098 |
| 0.9347 | 0.5032 | 172 | 1.3828 |
| 0.9142 | 0.7548 | 258 | 1.3693 |
| 0.7967 | 1.0037 | 344 | 1.3659 |
| 0.7912 | 1.2551 | 430 | 1.3728 |
| 0.7957 | 1.5065 | 516 | 1.3730 |
| 0.7951 | 1.7579 | 602 | 1.3713 |
### Framework versions
- Transformers 4.46.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.0