Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: qlora
auto_resume_from_checkpoints: true
base_model: microsoft/phi-1_5
bf16: auto
chat_template: llama3
dataloader_num_workers: 6
dataset_prepared_path: null
datasets:
- data_files:
  - fad2b8f707b1cfd3_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/fad2b8f707b1cfd3_train_data.json
  type:
    field_input: code
    field_instruction: func_name
    field_output: docstring
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: true
hub_model_id: error577/fd8d3950-1462-43c2-913e-c1abcf5e5f78
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 128
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1000
micro_batch_size: 1
mlflow_experiment_name: /tmp/fad2b8f707b1cfd3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
sequence_len: 512
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.002
wandb_entity: null
wandb_mode: online
wandb_name: 529ae2fb-759d-4fd1-98ca-26dcfa3ef350
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 529ae2fb-759d-4fd1-98ca-26dcfa3ef350
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

fd8d3950-1462-43c2-913e-c1abcf5e5f78

This model is a fine-tuned version of microsoft/phi-1_5 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0156

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss
0.2023 0.0001 1 2.2416
0.0064 0.0029 50 0.0309
0.0035 0.0057 100 0.0345
0.0098 0.0086 150 0.0084
0.0961 0.0114 200 0.0102
0.0171 0.0143 250 0.0093
0.0019 0.0171 300 0.0156

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
20
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for error577/fd8d3950-1462-43c2-913e-c1abcf5e5f78

Base model

microsoft/phi-1_5
Adapter
(465)
this model