metadata
library_name: transformers
license: apache-2.0
language:
- en
base_model:
- HuggingFaceTB/SmolVLM-256M-Instruct
pipeline_tag: image-text-to-text
SmolDocling-256M-preview
SmolDocling is a multimodal Image-Text-to-Text model designed for efficient document conversion. It retains Docling's most popular features while ensuring full compatibility with Docling through seamless support for DoclingDocuments.
🚀 Features:
- 🏷️ DocTags for Efficient Tokenization – Introduces DocTags an efficient and minimal representation for documents that is fully compatible with DoclingDocuments.
- 🔍 OCR (Optical Character Recognition) – Extracts text accurately from images.
- 📐 Layout and Localization – Preserves document structure and document element bounding boxes.
- 💻 Code Recognition – Detects and formats code blocks including identation.
- 🔢 Formula Recognition – Identifies and processes mathematical expressions.
- 📊 Chart Recognition – Extracts and interprets chart data.
- 📑 Table Recognition – Supports column and row headers for structured table extraction.
- 🖼️ Figure Classification – Differentiates figures and graphical elements.
- 📝 Caption Correspondence – Links captions to relevant images and figures.
- 📜 List Grouping – Organizes and structures list elements correctly.
- 📄 Full-Page Conversion – Processes entire pages for comprehensive document conversion including all page elements (code, equations, tables, charts etc.)
- 🔲 OCR with Bounding Boxes – OCR regions using a bounding box.
- 📂 General Document Processing – Trained for non-scientific documents and scientific.
- 🔄 Seamless Docling Integration – Import into Docling and export in multiple formats.
- 📚 Multi-Page & Full Document Conversion – Coming soon! 🚧
Repository: [More Information Needed] Paper [optional]: [More Information Needed] Demo [optional]: [More Information Needed]
Model Summary
- Developed by: Docling Team
- Model type: Multi-modal model (image+text)
- Language(s) (NLP): English
- License: Apache 2.0
- Finetuned from model: Based on Idefics3 (see technical summary)
How to get started
You can use transformers or docling to perform inference:
Transformers:
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
from transformers.image_utils import load_image
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Load images
image = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")
# Initialize processor and model
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
model = AutoModelForVision2Seq.from_pretrained(
"ds4sd/SmolDocling-256M-preview",
torch_dtype=torch.bfloat16,
_attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager",
).to(DEVICE)
# Create input messages
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Convert this page to docling."}
]
},
]
# Prepare inputs
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[image], return_tensors="pt")
inputs = inputs.to(DEVICE)
# Generate outputs
generated_ids = model.generate(**inputs, max_new_tokens=500)
generated_texts = processor.batch_decode(
generated_ids,
skip_special_tokens=True,
)
print(generated_texts[0])
Docling:
import json
import time
from pathlib import Path
import yaml
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import SmolDoclingOptions, VlmPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline
sources = [
# "https://arxiv.org/pdf/2408.09869",
"tests/data/2305.03393v1-pg9-img.png",
# "tests/data/2305.03393v1-pg9.pdf",
]
pipeline_options = VlmPipelineOptions() # artifacts_path="~/local_model_artifacts/"
pipeline_options.generate_page_images = True
# If force_backend_text = True, text from backend will be used instead of generated text
pipeline_options.force_backend_text = False
vlm_options = SmolDoclingOptions(
# question="Convert this page to docling.",
# load_in_8bit=True,
# llm_int8_threshold=6.0,
# quantized=False,
)
pipeline_options.vlm_options = vlm_options
from docling_core.types.doc import DocItemLabel, ImageRefMode
from docling_core.types.doc.document import DEFAULT_EXPORT_LABELS
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
InputFormat.IMAGE: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
}
)
out_path = Path("scratch")
out_path.mkdir(parents=True, exist_ok=True)
for source in sources:
start_time = time.time()
print("================================================")
print("Processing... {}".format(source))
print("================================================")
print("")
res = converter.convert(source)
print("------------------------------------------------")
print("MD:")
print("------------------------------------------------")
print("")
print(res.document.export_to_markdown())
# with (out_path / f"{res.input.file.stem}.html").open("w") as fp:
# fp.write(res.document.export_to_html())
res.document.save_as_html(
filename=Path("{}/{}.html".format(out_path, res.input.file.stem)),
image_mode=ImageRefMode.REFERENCED,
labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE],
)
with (out_path / f"{res.input.file.stem}.json").open("w") as fp:
fp.write(json.dumps(res.document.export_to_dict()))
with (out_path / f"{res.input.file.stem}.yaml").open("w") as fp:
fp.write(yaml.safe_dump(res.document.export_to_dict()))
pg_num = res.document.num_pages()
print("")
inference_time = time.time() - start_time
print(
f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}"
)
print("================================================")
print("done!")
print("================================================")