You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

SentenceTransformer based on BAAI/bge-m3

This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-m3
  • Maximum Sequence Length: 96 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 96, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("disi-unibo-nlp/foodex-facet-descriptors-retriever")
# Run inference
sentences = [
    'tome des bauges raw milk aoc in plastic container brand product name </s> This facet allows recording whether the food list code was chosen because of lack of information on the food item or because the proper entry in the food list was missing. Only one descriptor from this facet can be added to each entry.',
    'The food list item has been chosen because none of the more detailed items corresponded to the available information. Please consider the eventual addition of a new term in the list',
    'Deprecated term that must NOT be used for any purpose. Its original scopenote was: The group includes any type of Other fruiting vegetables (exposure). The part consumed/analysed is by default unspecified. When relevant, information on the part consumed/analysed has to be reported with additional facet descriptors.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Device Aware Information Retrieval

  • Evaluated with src.utils.eval_functions.DeviceAwareInformationRetrievalEvaluator
Metric Value
cosine_accuracy@1 0.985
cosine_accuracy@3 0.999
cosine_accuracy@5 0.9998
cosine_accuracy@10 1.0
cosine_precision@1 0.985
cosine_precision@3 0.4171
cosine_precision@5 0.2537
cosine_precision@10 0.1275
cosine_recall@1 0.8691
cosine_recall@3 0.9939
cosine_recall@5 0.9985
cosine_recall@10 0.9999
cosine_ndcg@10 0.9936
cosine_mrr@10 0.9919
cosine_map@100 0.9909

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,225,740 training samples
  • Columns: sentence_0, sentence_1, and sentence_2
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 sentence_2
    type string string string
    details
    • min: 37 tokens
    • mean: 89.82 tokens
    • max: 96 tokens
    • min: 6 tokens
    • mean: 39.38 tokens
    • max: 96 tokens
    • min: 5 tokens
    • mean: 39.59 tokens
    • max: 96 tokens
  • Samples:
    sentence_0 sentence_1 sentence_2
    peach fresh flesh baked with skin This facet allows recording different characteristics of the food: preservation treatments a food item underwent, technological steps or treatments applied while producing a food item, the way a food item has been heat treated before consumption and the way a food item has been prepared for final consumption (particularly needed for consumption surveys and includes preparation (like battering or breading) as well as heat treatment steps). More (none contradicting) descriptors can be applied to each entry. Cooking by dry heat in or as if in an oven Previously cooked or heat-treated fodd, heated again in order to raise its temperature (all different techniques)
    turkey breast with bones frozen barbecued without skin This facet allows recording different characteristics of the food: preservation treatments a food item underwent, technological steps or treatments applied while producing a food item, the way a food item has been heat treated before consumption and the way a food item has been prepared for final consumption (particularly needed for consumption surveys and includes preparation (like battering or breading) as well as heat treatment steps). More (none contradicting) descriptors can be applied to each entry. Preserving by freezing sufficiently rapidly to avoid spoilage and microbial growth Drying to a water content low enough to guarantee microbiological stability, but still keeping a relatively soft structure (often used for fruit)
    yoghurt flavoured cow blueberry sweetened with sugar sucrose whole in glass commercial supermarket shop organic shop brand product name This facet provides some principal claims related to important nutrients-ingredients, like fat, sugar etc. It is not intended to include health claims or similar. The present guidance provides a limited list, to be eventually improved during the evolution of the system. More than one descriptor can be applied to each entry, provided they are not contradicting each other. The food item has all the natural (or average expected )fat content (for milk, at least the value defined in legislation, when available). In the case of cheese, the fat on the dry matter is 45-60% The food item has an almost completely reduced amount of fat, with respect to the expected natural fat content (for milk, at least the value defined in legislation, when available). For meat, this is the entry for what is commercially intended as 'lean' meat, where fat is not visible.In the case of cheese, the fat on the dry matter is 10-25%
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 48
  • per_device_eval_batch_size: 48
  • fp16: True
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 48
  • per_device_eval_batch_size: 48
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Click to expand
Epoch Step Training Loss cosine_ndcg@10
0 0 - 0.0266
0.0196 500 1.5739 -
0.0392 1000 0.9043 -
0.0587 1500 0.8234 -
0.0783 2000 0.7861 -
0.0979 2500 0.7628 -
0.1175 3000 0.7348 -
0.1371 3500 0.7184 -
0.1566 4000 0.7167 -
0.1762 4500 0.7002 -
0.1958 5000 0.6791 0.9264
0.2154 5500 0.6533 -
0.2350 6000 0.6628 -
0.2545 6500 0.6637 -
0.2741 7000 0.639 -
0.2937 7500 0.6395 -
0.3133 8000 0.6358 -
0.3329 8500 0.617 -
0.3524 9000 0.6312 -
0.3720 9500 0.6107 -
0.3916 10000 0.6083 0.9518
0.4112 10500 0.6073 -
0.4307 11000 0.601 -
0.4503 11500 0.6047 -
0.4699 12000 0.5986 -
0.4895 12500 0.5913 -
0.5091 13000 0.5992 -
0.5286 13500 0.5911 -
0.5482 14000 0.5923 -
0.5678 14500 0.5816 -
0.5874 15000 0.582 0.9628
0.6070 15500 0.5815 -
0.6265 16000 0.5827 -
0.6461 16500 0.5885 -
0.6657 17000 0.5737 -
0.6853 17500 0.577 -
0.7049 18000 0.5687 -
0.7244 18500 0.5744 -
0.7440 19000 0.5774 -
0.7636 19500 0.5792 -
0.7832 20000 0.5645 0.9739
0.8028 20500 0.5769 -
0.8223 21000 0.5659 -
0.8419 21500 0.5635 -
0.8615 22000 0.5677 -
0.8811 22500 0.5693 -
0.9007 23000 0.5666 -
0.9202 23500 0.5526 -
0.9398 24000 0.5591 -
0.9594 24500 0.563 -
0.9790 25000 0.555 0.9808
0.9986 25500 0.5585 -
1.0 25537 - 0.9811
1.0181 26000 0.5595 -
1.0377 26500 0.5507 -
1.0573 27000 0.5582 -
1.0769 27500 0.5543 -
1.0964 28000 0.5598 -
1.1160 28500 0.5613 -
1.1356 29000 0.5457 -
1.1552 29500 0.5524 -
1.1748 30000 0.5324 0.9836
1.1943 30500 0.5531 -
1.2139 31000 0.5505 -
1.2335 31500 0.5623 -
1.2531 32000 0.5505 -
1.2727 32500 0.5583 -
1.2922 33000 0.548 -
1.3118 33500 0.5485 -
1.3314 34000 0.5509 -
1.3510 34500 0.54 -
1.3706 35000 0.5478 0.9835
1.3901 35500 0.5416 -
1.4097 36000 0.5438 -
1.4293 36500 0.543 -
1.4489 37000 0.547 -
1.4685 37500 0.5362 -
1.4880 38000 0.5536 -
1.5076 38500 0.5356 -
1.5272 39000 0.5382 -
1.5468 39500 0.5481 -
1.5664 40000 0.5302 0.9880
1.5859 40500 0.5275 -
1.6055 41000 0.5327 -
1.6251 41500 0.5414 -
1.6447 42000 0.5354 -
1.6643 42500 0.536 -
1.6838 43000 0.5364 -
1.7034 43500 0.5391 -
1.7230 44000 0.5342 -
1.7426 44500 0.5369 -
1.7621 45000 0.5387 0.9894
1.7817 45500 0.5312 -
1.8013 46000 0.5297 -
1.8209 46500 0.5222 -
1.8405 47000 0.5255 -
1.8600 47500 0.5379 -
1.8796 48000 0.5317 -
1.8992 48500 0.5312 -
1.9188 49000 0.5307 -
1.9384 49500 0.5375 -
1.9579 50000 0.527 0.9908
1.9775 50500 0.538 -
1.9971 51000 0.5312 -
2.0 51074 - 0.9911
2.0167 51500 0.5346 -
2.0363 52000 0.5279 -
2.0558 52500 0.517 -
2.0754 53000 0.5193 -
2.0950 53500 0.5286 -
2.1146 54000 0.5229 -
2.1342 54500 0.5183 -
2.1537 55000 0.5194 0.9915
2.1733 55500 0.5362 -
2.1929 56000 0.5186 -
2.2125 56500 0.5202 -
2.2321 57000 0.5276 -
2.2516 57500 0.5266 -
2.2712 58000 0.5334 -
2.2908 58500 0.5206 -
2.3104 59000 0.5229 -
2.3300 59500 0.5111 -
2.3495 60000 0.5175 0.9928
2.3691 60500 0.5235 -
2.3887 61000 0.5127 -
2.4083 61500 0.5291 -
2.4278 62000 0.5122 -
2.4474 62500 0.5196 -
2.4670 63000 0.5159 -
2.4866 63500 0.5207 -
2.5062 64000 0.5157 -
2.5257 64500 0.5094 -
2.5453 65000 0.5283 0.9937
2.5649 65500 0.5256 -
2.5845 66000 0.524 -
2.6041 66500 0.5324 -
2.6236 67000 0.5132 -
2.6432 67500 0.5203 -
2.6628 68000 0.5224 -
2.6824 68500 0.5255 -
2.7020 69000 0.5132 -
2.7215 69500 0.525 -
2.7411 70000 0.5257 0.9936
2.7607 70500 0.5206 -
2.7803 71000 0.514 -
2.7999 71500 0.5175 -
2.8194 72000 0.5245 -
2.8390 72500 0.5144 -
2.8586 73000 0.5246 -
2.8782 73500 0.5227 -
2.8978 74000 0.5199 -
2.9173 74500 0.5216 -
2.9369 75000 0.5253 0.9936
2.9565 75500 0.5303 -
2.9761 76000 0.5148 -
2.9957 76500 0.5248 -
3.0 76611 - 0.9936

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.4.1
  • Transformers: 4.49.0
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.4.0
  • Datasets: 3.3.1
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
5
Safetensors
Model size
568M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for disi-unibo-nlp/foodex-facet-descriptors-retriever

Base model

BAAI/bge-m3
Finetuned
(230)
this model

Collection including disi-unibo-nlp/foodex-facet-descriptors-retriever

Evaluation results