🥗 FoodEx2 System
Collection
Datasets and Models for the FoodEx2 System Project
•
10 items
•
Updated
•
1
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("disi-unibo-nlp/foodex-baseterm-retriever")
# Run inference
sentences = [
'sauce cream salad dressing based facets desc food production commercial brandname productname known',
'The group includes any type of Salad dressing. The part consumed/analysed is by default the whole marketed unit or a homogeneous representative portion.',
'The group includes any type of Seasonings and extracts. The part consumed/analysed is by default the whole marketed unit or a representative portion of it.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
src.utils.eval_functions.DeviceAwareInformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9617 |
cosine_accuracy@3 | 0.9974 |
cosine_accuracy@5 | 0.9993 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.9617 |
cosine_precision@3 | 0.3347 |
cosine_precision@5 | 0.2012 |
cosine_precision@10 | 0.1008 |
cosine_recall@1 | 0.9586 |
cosine_recall@3 | 0.997 |
cosine_recall@5 | 0.9988 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9846 |
cosine_mrr@10 | 0.9793 |
cosine_map@100 | 0.9791 |
sentence_0
, sentence_1
, and sentence_2
sentence_0 | sentence_1 | sentence_2 | |
---|---|---|---|
type | string | string | string |
details |
|
|
|
sentence_0 | sentence_1 | sentence_2 |
---|---|---|
porridge made with ssmilk water |
The group includes any type of Oat porridge in dry form to be diluted with milk or water. The term refers to e.g. ground oatmeal or rolled oat intended to be used for making oat porridge. The part consumed/analysed is by default the whole or a portion of it representing the observed heterogeneity. |
The group includes any type of Oat flour (finely milled grains with particles not easy to distinguish). Different grades of refinement and types are all included in this group. The part consumed/analysed is by default the whole or a portion of it representing the observed heterogeneity. |
pepper sweet red raw unprocessed fresh no treatment brand product name with skin peel crust bought chilled fresh department 2 8 c |
Fruiting vegetables from the plant classified under the species Capsicum annuum var. grossum (L.) Sendtner or Capsicum annuum var. longum Bailey, commonly known as Sweet peppers or Bell peppers or Paprika or PeppersLong or Pimento or Pimiento. The part consumed/analysed is not specified. When relevant, information on the part consumed/analysed has to be reported with additional facet descriptors. In case of data collections related to legislations, the default part consumed/analysed is the one defined in the applicable legislation. |
Spices from the fruits of the plant classified under the species Piper guineense Thonn., commonly known as West African pepper fruit. The part consumed/analysed is not specified. When relevant, information on the part consumed/analysed has to be reported with additional facet descriptors. In case of data collections related to legislations, the default part consumed/analysed is the one defined in the applicable legislation. |
yeasted wheat bread with sourmilk sliced |
The group includes any type of bread and rolls made with wheat flour containing high proportion of bran or wholemeal (brown or wholemeal wheat flour). The part consumed/analysed is by default the whole or a portion of it representing the observed heterogeneity. |
The group includes any type of bread and rolls made with wheat flour containing moderate amounts of bran (semi-brown wheat flour). The part consumed/analysed is by default the whole or a portion of it representing the observed heterogeneity. |
MultipleNegativesRankingLoss
with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 5fp16
: Truemulti_dataset_batch_sampler
: round_robinoverwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
: auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robinEpoch | Step | Training Loss | cosine_ndcg@10 |
---|---|---|---|
0 | 0 | - | 0.2918 |
0.0579 | 500 | 1.2336 | 0.7926 |
0.1157 | 1000 | 0.6594 | 0.8605 |
0.1736 | 1500 | 0.5586 | 0.8827 |
0.2315 | 2000 | 0.5041 | 0.8998 |
0.2893 | 2500 | 0.4777 | 0.9075 |
0.3472 | 3000 | 0.4616 | 0.9172 |
0.4050 | 3500 | 0.4416 | 0.9309 |
0.4629 | 4000 | 0.4292 | 0.9279 |
0.5208 | 4500 | 0.4105 | 0.9375 |
0.5786 | 5000 | 0.4011 | 0.9384 |
0.6365 | 5500 | 0.4064 | 0.9491 |
0.6944 | 6000 | 0.3864 | 0.9504 |
0.7522 | 6500 | 0.3864 | 0.9502 |
0.8101 | 7000 | 0.3803 | 0.9546 |
0.8680 | 7500 | 0.3837 | 0.9571 |
0.9258 | 8000 | 0.3775 | 0.9606 |
0.9837 | 8500 | 0.3728 | 0.9629 |
1.0 | 8641 | - | 0.9621 |
1.0415 | 9000 | 0.3612 | 0.9612 |
1.0994 | 9500 | 0.3657 | 0.9650 |
1.1573 | 10000 | 0.3613 | 0.9659 |
1.2151 | 10500 | 0.3556 | 0.9630 |
1.2730 | 11000 | 0.3657 | 0.9655 |
1.3309 | 11500 | 0.3645 | 0.9697 |
1.3887 | 12000 | 0.351 | 0.9702 |
1.4466 | 12500 | 0.3533 | 0.9702 |
1.5045 | 13000 | 0.3505 | 0.9723 |
1.5623 | 13500 | 0.3444 | 0.9713 |
1.6202 | 14000 | 0.3517 | 0.9725 |
1.6780 | 14500 | 0.3535 | 0.9735 |
1.7359 | 15000 | 0.353 | 0.9726 |
1.7938 | 15500 | 0.3444 | 0.9740 |
1.8516 | 16000 | 0.3455 | 0.9785 |
1.9095 | 16500 | 0.3459 | 0.9763 |
1.9674 | 17000 | 0.3494 | 0.9787 |
2.0 | 17282 | - | 0.9790 |
2.0252 | 17500 | 0.3487 | 0.9794 |
2.0831 | 18000 | 0.3371 | 0.9761 |
2.1410 | 18500 | 0.3315 | 0.9788 |
2.1988 | 19000 | 0.3352 | 0.9785 |
2.2567 | 19500 | 0.3396 | 0.9763 |
2.3145 | 20000 | 0.3356 | 0.9776 |
2.3724 | 20500 | 0.3382 | 0.9811 |
2.4303 | 21000 | 0.34 | 0.9805 |
2.4881 | 21500 | 0.3309 | 0.9802 |
2.5460 | 22000 | 0.3353 | 0.9797 |
2.6039 | 22500 | 0.3423 | 0.9798 |
2.6617 | 23000 | 0.3289 | 0.9809 |
2.7196 | 23500 | 0.3333 | 0.9803 |
2.7775 | 24000 | 0.338 | 0.9815 |
2.8353 | 24500 | 0.336 | 0.9816 |
2.8932 | 25000 | 0.3346 | 0.9813 |
2.9510 | 25500 | 0.3311 | 0.9807 |
3.0 | 25923 | - | 0.9819 |
3.0089 | 26000 | 0.3302 | 0.9824 |
3.0668 | 26500 | 0.3275 | 0.9833 |
3.1246 | 27000 | 0.3331 | 0.9840 |
3.1825 | 27500 | 0.3231 | 0.9839 |
3.2404 | 28000 | 0.3308 | 0.9839 |
3.2982 | 28500 | 0.3259 | 0.9836 |
3.3561 | 29000 | 0.3252 | 0.9838 |
3.4140 | 29500 | 0.315 | 0.9847 |
3.4718 | 30000 | 0.322 | 0.9829 |
3.5297 | 30500 | 0.3323 | 0.9837 |
3.5875 | 31000 | 0.3318 | 0.9833 |
3.6454 | 31500 | 0.3307 | 0.9842 |
3.7033 | 32000 | 0.331 | 0.9841 |
3.7611 | 32500 | 0.3209 | 0.9849 |
3.8190 | 33000 | 0.3267 | 0.9841 |
3.8769 | 33500 | 0.3214 | 0.9846 |
3.9347 | 34000 | 0.3232 | 0.9847 |
3.9926 | 34500 | 0.3291 | 0.9848 |
4.0 | 34564 | - | 0.9844 |
4.0505 | 35000 | 0.3257 | 0.9843 |
4.1083 | 35500 | 0.3237 | 0.9841 |
4.1662 | 36000 | 0.3177 | 0.9837 |
4.2240 | 36500 | 0.3314 | 0.9838 |
4.2819 | 37000 | 0.3266 | 0.9842 |
4.3398 | 37500 | 0.3184 | 0.9841 |
4.3976 | 38000 | 0.3162 | 0.9844 |
4.4555 | 38500 | 0.3164 | 0.9850 |
4.5134 | 39000 | 0.3209 | 0.9849 |
4.5712 | 39500 | 0.3292 | 0.9850 |
4.6291 | 40000 | 0.3194 | 0.9850 |
4.6870 | 40500 | 0.3212 | 0.9850 |
4.7448 | 41000 | 0.3359 | 0.9849 |
4.8027 | 41500 | 0.3199 | 0.9848 |
4.8605 | 42000 | 0.3257 | 0.9847 |
4.9184 | 42500 | 0.3172 | 0.9846 |
4.9763 | 43000 | 0.324 | 0.9846 |
5.0 | 43205 | - | 0.9846 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
BAAI/bge-m3