DictaBERT-splinter: Splintering Nonconcatenative Languages for Better Tokenization
DictaBERT-splinter is a BERT-style language model for Hebrew, released here.
This is the base model pretrained with the masked-language-modeling objective.
Sample usage:
from transformers import AutoModelForMaskedLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('dicta-il/dictabert-splinter', trust_remote_code=True)
model = AutoModelForMaskedLM.from_pretrained('dicta-il/dictabert-splinter')
model.eval()
sentence = 'בשנת 1948 השלים אפרים קישון את [MASK] בפיסול מתכת ובתולדות האמנות והחל לפרסם מאמרים הומוריסטיים'
output = model(tokenizer.encode(sentence, return_tensors='pt'))
# the [MASK] is the 7th token (including [CLS])
import torch
top_2 = torch.topk(output.logits[0, 7, :], 2)[1]
print('\n'.join(tokenizer.batch_decode(top_2))) # should print התמחותו / לימודיו
Citation
If you use DictaBERT-splinter in your research, please cite Splintering Nonconcatenative Languages for Better Tokenization
BibTeX:
@misc{gazit2025splinteringnonconcatenativelanguagesbetter,
title={Splintering Nonconcatenative Languages for Better Tokenization},
author={Bar Gazit and Shaltiel Shmidman and Avi Shmidman and Yuval Pinter},
year={2025},
eprint={2503.14433},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2503.14433},
}
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.