See axolotl config
axolotl version: 0.5.2
adapter: lora
base_model: microsoft/phi-1_5
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 78100e7707b0b68a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/78100e7707b0b68a_train_data.json
type:
field_instruction: prompt
field_output: chosen
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: dabrown/4850f9d6-8e3b-41d0-a654-4bb317185dbb
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: false
lora_inference_mode: true
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1500
micro_batch_size: 2
mlflow_experiment_name: /tmp/78100e7707b0b68a_train_data.json
model_type: AutoModelForCausalLM
modules_to_save: lm_head
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
peft_use_rslora: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: offline
wandb_name: eb2c90e2-a129-41a5-bb86-ae869f5bdbe3
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: eb2c90e2-a129-41a5-bb86-ae869f5bdbe3
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
4850f9d6-8e3b-41d0-a654-4bb317185dbb
This model is a fine-tuned version of microsoft/phi-1_5 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1556
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 1240
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.5015 | 0.0008 | 1 | 1.5468 |
1.1566 | 0.2502 | 310 | 1.2789 |
1.3703 | 0.5003 | 620 | 1.2165 |
1.2614 | 0.7505 | 930 | 1.1623 |
1.545 | 1.0006 | 1240 | 1.1556 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.3.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for dabrown/4850f9d6-8e3b-41d0-a654-4bb317185dbb
Base model
microsoft/phi-1_5