YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Introduction

How to clone this repo

sudo apt-get install git-lfs
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07


cd icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07
git lfs pull

Catuion: You have to run git lfs pull. Otherwise, you will be SAD later.

The model in this repo is trained using the commit a8150021e01d34ecbd6198fe03a57eacf47a16f2.

You can use

git clone https://github.com/k2-fsa/icefall
cd icefall
git checkout a8150021e01d34ecbd6198fe03a57eacf47a16f2

to download icefall.

You can find the model information by visiting https://github.com/k2-fsa/icefall/blob/a8150021e01d34ecbd6198fe03a57eacf47a16f2/egs/librispeech/ASR/transducer_stateless/train.py#L198.

In short, the encoder is a Conformer model with 8 heads, 12 encoder layers, 512-dim attention, 2048-dim feedforward; the decoder contains a 1024-dim embedding layer and a Conv1d with kernel size 2.

The decoder architecture is modified from Rnn-Transducer with Stateless Prediction Network. A Conv1d layer is placed right after the input embedding layer.


Description

This repo provides pre-trained transducer Conformer model for the LibriSpeech dataset using icefall. There are no RNNs in the decoder. The decoder is stateless and contains only an embedding layer and a Conv1d.

The commands for training are:

cd egs/librispeech/ASR/
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./transducer_stateless/train.py \
  --world-size 4 \
  --num-epochs 76 \
  --start-epoch 0 \
  --exp-dir transducer_stateless/exp-full \
  --full-libri 1 \
  --max-duration 300 \
  --lr-factor 5 \
  --bpe-model data/lang_bpe_500/bpe.model \
  --modified-transducer-prob 0.25

The tensorboard training log can be found at https://tensorboard.dev/experiment/qgvWkbF2R46FYA6ZMNmOjA/

The command for decoding is:

epoch=63
avg=19

## greedy search
for sym in 1 2 3; do
  ./transducer_stateless/decode.py \
    --epoch $epoch \
    --avg $avg \
    --exp-dir transducer_stateless/exp-full \
    --bpe-model ./data/lang_bpe_500/bpe.model \
    --max-duration 100 \
    --max-sym-per-frame $sym
done

## modified beam search

./transducer_stateless/decode.py \
  --epoch $epoch \
  --avg $avg \
  --exp-dir transducer_stateless/exp-full \
  --bpe-model ./data/lang_bpe_500/bpe.model \
  --max-duration 100 \
  --context-size 2 \
  --decoding-method modified_beam_search \
  --beam-size 4

You can find the decoding log for the above command in this repo (in the folder log).

The WERs for the test datasets are

test-clean test-other comment
greedy search (max sym per frame 1) 2.67 6.67 --epoch 63, --avg 19, --max-duration 100
greedy search (max sym per frame 2) 2.67 6.67 --epoch 63, --avg 19, --max-duration 100
greedy search (max sym per frame 3) 2.67 6.67 --epoch 63, --avg 19, --max-duration 100
modified beam search (beam size 4) 2.67 6.57 --epoch 63, --avg 19, --max-duration 100

File description

  • log, this directory contains the decoding log and decoding results
  • test_wavs, this directory contains wave files for testing the pre-trained model
  • data, this directory contains files generated by prepare.sh
  • exp, this directory contains only one file: preprained.pt

exp/pretrained.pt is generated by the following command:

./transducer_stateless/export.py \
  --epoch 63 \
  --avg 19 \
  --bpe-model data/lang_bpe_500/bpe.model \
  --exp-dir transducer_stateless/exp-full

HINT: To use pretrained.pt to compute the WER for test-clean and test-other, just do the following:

cp icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07/exp/pretrained.pt \
  /path/to/icefall/egs/librispeech/ASR/transducer_stateless/exp/epoch-999.pt

and pass --epoch 999 --avg 1 to transducer_stateless/decode.py.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.