metadata
pipeline_tag: text-generation
inference: true
license: mit
datasets:
- knoveleng/open-rs
- knoveleng/open-s1
- knoveleng/open-deepscaler
base_model: knoveleng/Open-RS3
tags:
- mlx
cnfusion/Open-RS3-mlx-4Bit
The Model cnfusion/Open-RS3-mlx-4Bit was converted to MLX format from knoveleng/Open-RS3 using mlx-lm version 0.22.1.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("cnfusion/Open-RS3-mlx-4Bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)