|
--- |
|
license: mit |
|
base_model: EleutherAI/gpt-neo-125m |
|
tags: |
|
- trl |
|
- dpo |
|
- generated_from_trainer |
|
model-index: |
|
- name: gpt-neo-125m_hh_reward |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gpt-neo-125m_hh_reward |
|
|
|
This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7503 |
|
- Rewards/chosen: -4.2523 |
|
- Rewards/rejected: -4.3731 |
|
- Rewards/accuracies: 0.5625 |
|
- Rewards/margins: 0.1208 |
|
- Logps/rejected: -168.5040 |
|
- Logps/chosen: -147.3926 |
|
- Logits/rejected: -11.6528 |
|
- Logits/chosen: -11.5062 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 150 |
|
- training_steps: 4050 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| |
|
| 0.8022 | 0.2 | 2000 | 0.7737 | -4.8718 | -5.0523 | 0.5724 | 0.1805 | -175.2956 | -153.5872 | -11.7730 | -11.6673 | |
|
| 0.7336 | 0.4 | 4000 | 0.7503 | -4.2523 | -4.3731 | 0.5625 | 0.1208 | -168.5040 | -147.3926 | -11.6528 | -11.5062 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|