|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google-bert/bert-base-multilingual-cased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
datasets: |
|
- albertmartinez/openalex-topic-title-abstract |
|
model-index: |
|
- name: openalex-topic-classification-title-abstract |
|
results: |
|
- task: |
|
type: text-classification |
|
name: text-classification |
|
dataset: |
|
name: albertmartinez/openalex-topic-title-abstract |
|
type: albertmartinez/openalex-topic-title-abstract |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.6895704387552961 |
|
name: accuracy |
|
args: |
|
accuracy: 0.6895704387552961 |
|
total_time_in_seconds: 2136.2893175369827 |
|
samples_per_second: 197.54440399793566 |
|
latency_in_seconds: 0.005062153013509054 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# openalex-topic-classification-title-abstract |
|
|
|
This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.1286 |
|
- Accuracy: 0.5287 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:------:|:---------------:|:--------:| |
|
| 4.7089 | 1.0 | 26376 | 4.6094 | 0.1920 | |
|
| 2.9397 | 2.0 | 52752 | 2.8504 | 0.4195 | |
|
| 2.444 | 3.0 | 79128 | 2.4296 | 0.4763 | |
|
| 2.1399 | 4.0 | 105504 | 2.2586 | 0.5015 | |
|
| 1.9042 | 5.0 | 131880 | 2.1800 | 0.5144 | |
|
| 1.7293 | 6.0 | 158256 | 2.1372 | 0.5227 | |
|
| 1.5672 | 7.0 | 184632 | 2.1298 | 0.5260 | |
|
| 1.4574 | 8.0 | 211008 | 2.1245 | 0.5281 | |
|
| 1.3737 | 9.0 | 237384 | 2.1277 | 0.5285 | |
|
| 1.3748 | 10.0 | 263760 | 2.1286 | 0.5287 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.49.0.dev0 |
|
- Pytorch 2.6.0+cu118 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.21.0 |