ZeroXClem/L3-Aspire-Heart-Matrix-8B
ZeroXClem/L3-Aspire-Heart-Matrix-8B is an experimental language model crafted by merging three high-quality 8B parameter models using the Model Stock Merge method. This synthesis leverages the unique strengths of Aspire, Heart Stolen, and CursedMatrix, creating a highly versatile and robust language model for a wide array of tasks.
🌟 Model Details
- Name:
ZeroXClem/L3-Aspire-Heart-Matrix-8B
- Base Model:
Khetterman/CursedMatrix-8B-v9
- Merge Method:
Model Stock
- Parameter Count:
8 billion
- Precision:
bfloat16
📋 Models Used in the Merge
Aspire
Creator: DreadPoor
Known for exceptional performance across diverse tasks and benchmarks.Heart Stolen
Creator: DreadPoor
Renowned for its creative and empathetic prowess.CursedMatrix
Creator: Khetterman
Famous for its depth and complexity, particularly in creative writing and roleplay.
⚙️ Merge Configuration
models:
- model: DreadPoor/Aspire-8B-model_stock
- model: DreadPoor/Heart_Stolen-8B-Model_Stock
- model: Khetterman/CursedMatrix-8B-v9
merge_method: model_stock
base_model: Khetterman/CursedMatrix-8B-v9
normalize: false
int8_mask: true
dtype: bfloat16
🌌 Model Capabilities
This powerful merger unites the best features of its components:
- Aspire: Outstanding performance across general tasks and benchmarks.
- Heart Stolen: Creativity and empathy at its core.
- CursedMatrix: Mastery of complex and dynamic text generation.
The resulting model excels in:
- 🌟 General Question Answering
- 📝 Creative Writing
- ✂️ Summarizing Long-Form Content
- 🎭 Roleplay Scenarios
- ✅ Task Completion and Problem-Solving
🛠️ Usage
This model is compatible with popular inference frameworks, including:
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "ZeroXClem/L3-Aspire-Heart-Matrix-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
input_text = "What are the fundamentals of python programming?"
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output = model.generate(input_ids, max_length=100)
response = tokenizer.decode(output[0], skip_special_tokens=True)
print(response)
Whether you're fine-tuning for specific tasks or using it out of the box, this model is a good base for your applications.
Please give us any feedback if issues arise during inference via the discussions tab.
⚖️ Ethical Considerations
Given its uncensored origins and the potential for emergent behaviors, users should exercise caution. Be mindful of:
- Potential biases in outputs.
- Unexpected or unpredictable behavior in uncensored settings.
Best Practices: Implement robust content filtering and ensure responsible deployment in production environments.
🙏 Acknowledgements
A heartfelt thank-you to the creators of the original models:
- DreadPoor for Aspire and Heart Stolen.
- Khetterman for CursedMatrix.
Your brilliant contributions made this merge a reality.
📜 License
This model inherits the licensing terms of its base components. Please refer to the licenses of:
Ensure compliance with all licensing requirements when using this model.
- Downloads last month
- 29