Amitz244's picture
Update README.md
d94ab16 verified
---
language:
- en
base_model:
- openai/clip-vit-large-patch14
tags:
- emotion_prediction
- VEA
- computer_vision
- perceptual_tasks
- CLIP
- EmoSet
---
**PerceptCLIP-Emotions** is a model designed to predict the **emotions** that an image evokes in users. This is the official model from the paper:
📄 **["Don't Judge Before You CLIP: A Unified Approach for Perceptual Tasks"](https://arxiv.org/abs/2503.13260)**.
We apply **LoRA adaptation** on the **CLIP visual encoder** and add an **MLP head** for emotion classification. Our model achieves **state-of-the-art results**.
## Training Details
- *Dataset*: [EmoSet](https://vcc.tech/EmoSet)
- *Architecture*: CLIP Vision Encoder (ViT-L/14) with *LoRA adaptation*
- *Loss Function*: Cross Entropy Loss
- *Optimizer*: AdamW
- *Learning Rate*: 0.0001
- *Batch Size*: 32
## Installation & Requirements
You can set up the environment using environment.yml or manually install dependencies:
- python=3.9.15
- cudatoolkit=11.7
- torchvision=0.14.0
- transformers=4.45.2
- peft=0.14.0
## Usage
To use the model for inference:
```python
from torchvision import transforms
import torch
from PIL import Image
from huggingface_hub import hf_hub_download
import importlib.util
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the model class definition dynamically
class_path = hf_hub_download(repo_id="PerceptCLIP/PerceptCLIP_Emotions", filename="modeling.py")
spec = importlib.util.spec_from_file_location("modeling", class_path)
modeling = importlib.util.module_from_spec(spec)
spec.loader.exec_module(modeling)
# initialize a model
ModelClass = modeling.clip_lora_model
model = ModelClass().to(device)
# Load pretrained model
model_path = hf_hub_download(repo_id="PerceptCLIP/PerceptCLIP_Emotions", filename="perceptCLIP_Emotions.pth")
model.load_state_dict(torch.load(model_path, map_location=device))
model.eval()
# Emotion label mapping
idx2label = {
0: "amusement",
1: "awe",
2: "contentment",
3: "excitement",
4: "anger",
5: "disgust",
6: "fear",
7: "sadness"
}
# Preprocessing function
def emo_preprocess():
transform = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(size=(224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)),
])
return transform
# Load an image
image = Image.open("image_path.jpg").convert("RGB")
image = emo_preprocess()(image).unsqueeze(0).to(device)
# Run inference
with torch.no_grad():
outputs = model(image)
_, predicted = outputs.max(1)
# Get emotion label
predicted_emotion = idx2label[predicted.item()]
print(f"Predicted Emotion: {predicted_emotion}")
```
## Citation
If you use this model in your research, please cite:
```bibtex
@article{zalcher2025don,
title={Don't Judge Before You CLIP: A Unified Approach for Perceptual Tasks},
author={Zalcher, Amit and Wasserman, Navve and Beliy, Roman and Heinimann, Oliver and Irani, Michal},
journal={arXiv preprint arXiv:2503.13260},
year={2025}
}