fine-tuned-visionllama

This model is a fine-tuned version of meta-llama/Llama-3.2-11B-Vision-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0321

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.179 0.2849 25 0.1736
0.1156 0.5698 50 0.1071
0.0531 0.8547 75 0.0782
0.0484 1.1396 100 0.0586
0.0224 1.4245 125 0.0365
0.0186 1.7094 150 0.0318
0.0178 1.9943 175 0.0351
0.019 2.2792 200 0.0356
0.0219 2.5641 225 0.0323
0.0123 2.8490 250 0.0321

Framework versions

  • PEFT 0.13.0
  • Transformers 4.45.1
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.3
Downloads last month
2
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for JohnFante/fine-tuned-visionllama

Adapter
(123)
this model