EmbodiedAgent

Model release for paper: EmbodiedAgent: A Scalable Hierarchical Approach to Overcome Practical Challenge in Multi-Robot Control

figure

Results

Model Infer type ASR_{top-k} Expert grading UE PoE PlE SE EE RPAS
GPT-4o FPS 9.03 31.25 0.00 0.00 6.25 93.75 0.00 20.14
OpenAI-o1 FPS 6.74 34.38 0.00 0.00 3.12 96.88 0.00 20.56
Claude-3.5-Sonnet FPS 37.5 32.19 0.00 0.00 0.00 0.00 62.5 34.85
Deepseek-R1 FPS 61.87 64.84 0.00 18.75 15.62 0.00 18.75 63.36
Deepseek-R1-Distill-Llama3.3-70B NAP 33.70 60.00 3.12 59.38 3.12 0.00 21.88 46.85
LLaMA-3.1-8B NAP 16.56 43.44 3.12 71.88 50.00 18.75 3.12 30.00
LLaMA-3.1-70B NAP 27.50 40.94 0.00 9.38 87.5 62.5 21.88 34.22
LLaMA-3.1-405B NAP 34.24 61.09 28.12 46.88 6.25 0.00 0.00 47.67
LLaMA-3.3-70B NAP 46.02 60.31 0.00 48.48 39.39 15.15 6.06 53.26
Gemma-2-9B NAP 17.36 29.06 31.25 34.38 25.0 0.00 6.25 23.21
Qwen2.5-7B NAP 9.17 10.94 3.12 15.62 90.62 0.00 6.25 10.06
Qwen2.5-72B NAP 40.42 50.62 0.00 56.25 18.75 0.00 6.25 45.52
MAP-Neo-7B-Multiplan FPS 46.39 44.22 21.88 28.12 25.0 6.25 3.12 45.31
EmbodiedAgent (Ours) NAP 74.01 69.69 9.38 15.62 3.12 9.38 0.00 71.85

Links

Code: EmbodiedAgent

Dataset: MultiPlan+

Model weight: EmbodiedAgent

License

EmbodiedAgent is released under the llama3.1 License. See the LICENSE file for more details.

Downloads last month
19
Video Preview
loading

Model tree for HaronW/EmbodiedAgent

Finetuned
(1013)
this model