Dmitry Ryumin's picture

Dmitry Ryumin

DmitryRyumin

AI & ML interests

Machine Learning and Applications, Multi-Modal Understanding

Recent Activity

reacted to singhsidhukuldeep's post with 🔥 11 days ago
Exciting New Tool for Knowledge Graph Extraction from Plain Text! I just came across a groundbreaking new tool called KGGen that's solving a major challenge in the AI world - the scarcity of high-quality knowledge graph data. KGGen is an open-source Python package that leverages language models to extract knowledge graphs (KGs) from plain text. What makes it special is its innovative approach to clustering related entities, which significantly reduces sparsity in the extracted KGs. The technical approach is fascinating: 1. KGGen uses a multi-stage process involving an LLM (GPT-4o in their implementation) to extract entities and relations from source text 2. It aggregates graphs across sources to reduce redundancy 3. Most importantly, it applies iterative LM-based clustering to refine the raw graph The clustering stage is particularly innovative - it identifies which nodes and edges refer to the same underlying entities or concepts. This normalizes variations in tense, plurality, stemming, and capitalization (e.g., "labors" clustered with "labor"). The researchers from Stanford and University of Toronto also introduced MINE (Measure of Information in Nodes and Edges), the first benchmark for evaluating KG extractors. When tested against existing methods like OpenIE and GraphRAG, KGGen outperformed them by up to 18%. For anyone working with knowledge graphs, RAG systems, or KG embeddings, this tool addresses the fundamental challenge of data scarcity that's been holding back progress in graph-based foundation models. The package is available via pip install kg-gen, making it accessible to everyone. This could be a game-changer for knowledge graph applications!
liked a Space 11 days ago
FunAudioLLM/CosyVoice2-0.5B
View all activity

Organizations

Gradio-Themes-Party's profile picture Gradio-Blocks-Party's profile picture Blog-explorers's profile picture New Era Artificial Intelligence's profile picture ICCV2023's profile picture ZeroGPU Explorers's profile picture Journalists on HF中国镜像站's profile picture Social Post Explorers's profile picture Dev Mode Explorers's profile picture

Posts 64

view post
Post
3666
🚀🎭🌟 New Research Alert - WACV 2025 (Avatars Collection)! 🌟🎭🚀
📄 Title: EmoVOCA: Speech-Driven Emotional 3D Talking Heads 🔝

📝 Description: EmoVOCA is a data-driven method for generating emotional 3D talking heads by combining speech-driven lip movements with expressive facial dynamics. This method has been developed to overcome the limitations of corpora and to achieve state-of-the-art animation quality.

👥 Authors: @FedeNoce , Claudio Ferrari, and Stefano Berretti

📅 Conference: WACV, 28 Feb – 4 Mar, 2025 | Arizona, USA 🇺🇸

📄 Paper: https://arxiv.org/abs/2403.12886

🌐 Github Page: https://fedenoce.github.io/emovoca/
📁 Repository: https://github.com/miccunifi/EmoVOCA

🚀 CVPR-2023-24-Papers: https://github.com/DmitryRyumin/CVPR-2023-24-Papers

🚀 WACV-2024-Papers: https://github.com/DmitryRyumin/WACV-2024-Papers

🚀 ICCV-2023-Papers: https://github.com/DmitryRyumin/ICCV-2023-Papers

📚 More Papers: more cutting-edge research presented at other conferences in the DmitryRyumin/NewEraAI-Papers curated by @DmitryRyumin

🚀 Added to the Avatars Collection: DmitryRyumin/avatars-65df37cdf81fec13d4dbac36

🔍 Keywords: #EmoVOCA #3DAnimation #TalkingHeads #SpeechDriven #FacialExpressions #MachineLearning #ComputerVision #ComputerGraphics #DeepLearning #AI #WACV2024
view post
Post
2760
🔥🎭🌟 New Research Alert - HeadGAP (Avatars Collection)! 🌟🎭🔥
📄 Title: HeadGAP: Few-shot 3D Head Avatar via Generalizable Gaussian Priors 🔝

📝 Description: HeadGAP introduces a novel method for generating high-fidelity, animatable 3D head avatars from few-shot data, using Gaussian priors and dynamic part-based modelling for personalized and generalizable results.

👥 Authors: @zxz267 , @walsvid , @zhaohu2 , Weiyi Zhang, @hellozhuo , Xu Chang, Yang Zhao, Zheng Lv, Xiaoyuan Zhang, @yongjie-zhang-mail , Guidong Wang, and Lan Xu

📄 Paper: HeadGAP: Few-shot 3D Head Avatar via Generalizable Gaussian Priors (2408.06019)

🌐 Github Page: https://headgap.github.io

🚀 CVPR-2023-24-Papers: https://github.com/DmitryRyumin/CVPR-2023-24-Papers

🚀 WACV-2024-Papers: https://github.com/DmitryRyumin/WACV-2024-Papers

🚀 ICCV-2023-Papers: https://github.com/DmitryRyumin/ICCV-2023-Papers

📚 More Papers: more cutting-edge research presented at other conferences in the DmitryRyumin/NewEraAI-Papers curated by @DmitryRyumin

🚀 Added to the Avatars Collection: DmitryRyumin/avatars-65df37cdf81fec13d4dbac36

🔍 Keywords: #HeadGAP #3DAvatar #FewShotLearning #GaussianPriors #AvatarCreation #3DModeling #MachineLearning #ComputerVision #ComputerGraphics #GenerativeAI #DeepLearning #AI

models

None public yet

datasets

None public yet