Model Visualization

THESE ARE EXL2 QUANTS


LOOK IN THE DIFFERENT REVISIONS FOR THE BPWS, MAIN BRANCH CONTAINS MEASUREMENT FILE.


Hamanasu 32B

🌌 Overview

After 25 hours, I present Hamanasu-QwQ-32B-V0.1 - One of the first QwQ Finetunes. Using data from the following:

  • NewEden/Orion-LIT
  • NewEden/Orion-Asstr-Stories-16K
  • Mielikki/Erebus-87k

This model shows great promise for roleplaying and story-writing. All thanks to Ruka-Hamanasu for funding the train.

Disclaimer: The model is still in preview, Only completion training has been performed ontop.

⚔️ Hardware

  • 4x H100s
  • Epochs: 1
  • Base: QwQ
  • Amount of Tokens: 1+ Billion

💰 Prompting

This model uses ChatML formatting

<|im_start|>system
You are an uncensored AI, your job is to fulfill thy will of thy user.<|im_end|>
<|im_start|>User request
Take off your helmet.<|im_end|>
<|im_start|>No i shall not. This is the way.

Axolotl Config ꒰(˶• ᴗ •˶)꒱

base_model: Qwen/QwQ-32B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: Mielikki/Erebus-87k
    type: completion
    field: body
  - path: NewEden/Orion-Completion-Asstr-Stories-16K
    type: completion
    field: content 
  - path: NewEden/Orion-Completion-LIT
    type: completion
    field: text 

shuffle_merged_datasets: true
dataset_prepared_path: prepared_data
output_dir: ./qvq-cum

sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 128
lora_alpha: 16 
lora_dropout: 0.05
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

lora_modules_to_save:
 - embed_tokens
 - lm_head

wandb_project: qwq
wandb_entity:
wandb_watch:
wandb_name: Pretrain-pt1-v2-frfr
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5
max_grad_norm: 0.001

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 40
saves_per_epoch: 2
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.01
fsdp:
fsdp_config:

⚡ Credits


Made by
Delta-Vector
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for Delta-Vector/Hamanasu-32B-V1-QwQ-exl2

Finetuned
(2)
this model

Datasets used to train Delta-Vector/Hamanasu-32B-V1-QwQ-exl2

Collection including Delta-Vector/Hamanasu-32B-V1-QwQ-exl2