DistilBERT Question Detector Model
DistilBERT 占卜问题检测模型
本项目提供了一个基于 DistilBERT
占卜问题检测模型,可用于判断输入文本是否为符合塔罗占卜的问题。
## 📂 目录结构
model.safetensors: The trained model weights.
config.json: The configuration file for the model architecture.
tokenizer.json: The tokenizer configuration.
special_tokens_map.json: The special tokens configuration.
vocab.txt: The vocabulary file for the tokenizer.
🚀 快速开始
1️⃣ 安装依赖
请确保你的环境已安装 Python 3.8+,然后运行以下命令安装所需的依赖库:
pip install torch transformers fastapi uvicorn safetensors
2️⃣ 直接运行推理
如果你想直接在本地测试模型,可以运行 inference.py: python inference.py 示例代码(inference.py):
import torch
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
# 1. 加载模型
model_path = "./distilbert-question-detector"
tokenizer = DistilBertTokenizer.from_pretrained(model_path)
model = DistilBertForSequenceClassification.from_pretrained(model_path)
model.eval()
# 2. 进行推理
text = "Is this a question?"
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probabilities = torch.nn.functional.softmax(logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=-1).item()
print(f"Probabilities: {probabilities}")
print(f"Predicted class: {predicted_class}") # 1 代表是疑问句,0 代表不是
3️⃣ 运行 API
你也可以使用 FastAPI 部署一个 HTTP 接口,允许其他应用通过 HTTP 请求访问模型。 uvicorn app:app --host 0.0.0.0 --port 8000 示例 API 代码(app.py):
from fastapi import FastAPI
import torch
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
app = FastAPI()
# 加载模型
model_path = "./distilbert-question-detector/checkpoint-5150"
tokenizer = DistilBertTokenizer.from_pretrained(model_path)
model = DistilBertForSequenceClassification.from_pretrained(model_path)
model.eval()
@app.post("/predict/")
async def predict(text: str):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probabilities = torch.nn.functional.softmax(logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=-1).item()
return {"text": text, "probabilities": probabilities.tolist(), "predicted_class": predicted_class}
API 运行后,可通过以下方式测试:
curl -X 'POST' \
'http://127.0.0.1:8000/predict/' \
-H 'Content-Type: application/json' \
-d '{"text": "Is this a valid question?"}'
📌 结果说明
predicted_class: 0 代表输入文本是符合条件 predicted_class: 1 代表输入文本不符合条件 示例结果
{
"text": "Is this a valid question?",
"probabilities": [[0.9266, 0.0734]],
"predicted_class": 0
}
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.
Model tree for AlexTANG-JX/Tarot_Question_Detector
Base model
distilbert/distilbert-base-uncased