Built with Axolotl

See axolotl config

axolotl version: 0.8.0.dev0

base_model: mistralai/Mistral-7B-Instruct-v0.3
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: AiAF/Pretraining-SCPWiki-032025-7B-Instruct

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: AiAF/Pretraining-SCPWiki-032025-7B-Instruct-pretraining.jsonl
   # type: completion
   # text_column: text # column in dataset with the data, usually `text`
    type: completion
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/qlora-out/Pretraining-SCPWiki-032025-7B-Instruct-V1

adapter: qlora
lora_model_dir:

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: "LLM-Pretraining"
wandb_entity:
wandb_watch: "all"
wandb_name: "Pretraining-SCPWiki-032025-7B-Instruct-V1"
wandb_log_model: "false"

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 20
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 20
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

Pretraining-SCPWiki-032025-7B-Instruct

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the AiAF/Pretraining-SCPWiki-032025-7B-Instruct-pretraining.jsonl dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5048

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss
2.0192 0.0016 1 1.9469
1.3794 0.0509 32 1.5979
1.5383 0.1019 64 1.5626
1.3583 0.1528 96 1.5544
1.3354 0.2037 128 1.5393
1.4771 0.2547 160 1.5319
1.4542 0.3056 192 1.5262
1.2767 0.3565 224 1.5228
1.3347 0.4075 256 1.5202
1.4451 0.4584 288 1.5169
1.1028 0.5094 320 1.5147
1.315 0.5603 352 1.5126
1.3244 0.6112 384 1.5106
1.3915 0.6622 416 1.5089
1.3156 0.7131 448 1.5077
1.2967 0.7640 480 1.5067
1.4046 0.8150 512 1.5056
1.4017 0.8659 544 1.5052
1.2678 0.9168 576 1.5050
1.231 0.9678 608 1.5048

Framework versions

  • PEFT 0.14.0
  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for AiAF/Pretraining-SCPWiki-032025-7B-Instruct

Adapter
(248)
this model

Dataset used to train AiAF/Pretraining-SCPWiki-032025-7B-Instruct