See axolotl config
axolotl version: 0.8.0.dev0
base_model: mistralai/Mistral-7B-Instruct-v0.3
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: AiAF/Pretraining-SCPWiki-032025-7B-Instruct
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: AiAF/Pretraining-SCPWiki-032025-7B-Instruct-pretraining.jsonl
# type: completion
# text_column: text # column in dataset with the data, usually `text`
type: completion
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/qlora-out/Pretraining-SCPWiki-032025-7B-Instruct-V1
adapter: qlora
lora_model_dir:
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: "LLM-Pretraining"
wandb_entity:
wandb_watch: "all"
wandb_name: "Pretraining-SCPWiki-032025-7B-Instruct-V1"
wandb_log_model: "false"
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 20
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 20
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
Pretraining-SCPWiki-032025-7B-Instruct
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the AiAF/Pretraining-SCPWiki-032025-7B-Instruct-pretraining.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 1.5048
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.0192 | 0.0016 | 1 | 1.9469 |
1.3794 | 0.0509 | 32 | 1.5979 |
1.5383 | 0.1019 | 64 | 1.5626 |
1.3583 | 0.1528 | 96 | 1.5544 |
1.3354 | 0.2037 | 128 | 1.5393 |
1.4771 | 0.2547 | 160 | 1.5319 |
1.4542 | 0.3056 | 192 | 1.5262 |
1.2767 | 0.3565 | 224 | 1.5228 |
1.3347 | 0.4075 | 256 | 1.5202 |
1.4451 | 0.4584 | 288 | 1.5169 |
1.1028 | 0.5094 | 320 | 1.5147 |
1.315 | 0.5603 | 352 | 1.5126 |
1.3244 | 0.6112 | 384 | 1.5106 |
1.3915 | 0.6622 | 416 | 1.5089 |
1.3156 | 0.7131 | 448 | 1.5077 |
1.2967 | 0.7640 | 480 | 1.5067 |
1.4046 | 0.8150 | 512 | 1.5056 |
1.4017 | 0.8659 | 544 | 1.5052 |
1.2678 | 0.9168 | 576 | 1.5050 |
1.231 | 0.9678 | 608 | 1.5048 |
Framework versions
- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for AiAF/Pretraining-SCPWiki-032025-7B-Instruct
Base model
mistralai/Mistral-7B-v0.3
Finetuned
mistralai/Mistral-7B-Instruct-v0.3